1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8090 [49]
4 years ago
5

How would you describe the U.S. dollar if the foreign exchange rate between the U.S. dollar and British pound changed from 1:1 t

o 1:0.7?
A. The dollar is stable.
B. The dollar has strengthened.
C. The dollar has weakened.
Mathematics
2 answers:
lions [1.4K]4 years ago
5 0
One way to describe the U.S. dollar if the foreign exchange rate between the U.S dollar and British pound changed from 1:1 to 1:07 is the dollar has weakened. The correct answer is C. 
BlackZzzverrR [31]4 years ago
4 0

Answer:

Option: C is correct.

( C. The dollar has weakened ).

Step-by-step explanation:

It is given that:

The foreign exchange rate between the U.S. dollar and British pound changed from 1:1 to 1:0.7.

i.e. earlier the U.S. dollar and British Pound were at the same rate.

Now the ratio has changed to 1:0.7

This means that the Dollar has weakened in comparison to the British Pound.

Hence, option: C is correct.

( C. The dollar has weakened )

You might be interested in
What is the unit price of a granola bar if 8 granola bars cost $4.16
ANEK [815]

Answer:

divide 8 by 4.16

Step-by-step explanation:

4 0
3 years ago
Read 2 more answers
Ω⊇↔↔⇆⇆∑⊕║⊕⊕⊇↔∨∞≈≠≤≥≡→↓∴∴
satela [25.4K]
What is this................................
6 0
3 years ago
What is the value of 24/25 divided by 4/5
Dimas [21]

Answer:

1.2

Hope it helps :)

3 0
3 years ago
Read 2 more answers
Find the sum of the first 25 terms in this geometric series:<br> 8 + 6 + 4.5...
Ksivusya [100]

Step-by-step explanation:

Given the geometric sequence

8 + 6 + 4.5...

A geometric sequence has a constant ratio and is defined by

a_n=a_1\cdot r^{n-1}

\mathrm{Compute\:the\:ratios\:of\:all\:the\:adjacent\:terms}:\quad \:r=\frac{a_{n+1}}{a_n}

\frac{6}{8}=\frac{3}{4},\:\quad \frac{4.5}{6}=\frac{3}{4}

\mathrm{The\:ratio\:of\:all\:the\:adjacent\:terms\:is\:the\:same\:and\:equal\:to}

r=\frac{3}{4}

\mathrm{The\:first\:element\:of\:the\:sequence\:is}

a_1=8

\mathrm{Therefore,\:the\:}n\mathrm{th\:term\:is\:computed\:by}\:

a_n=8\left(\frac{3}{4}\right)^{n-1}

\mathrm{Geometric\:sequence\:sum\:formula:}

a_1\frac{1-r^n}{1-r}

\mathrm{Plug\:in\:the\:values:}

n=25,\:\spacea_1=8,\:\spacer=\frac{3}{4}

=8\cdot \frac{1-\left(\frac{3}{4}\right)^{25}}{1-\frac{3}{4}}

\mathrm{Multiply\:fractions}:\quad \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c}

=\frac{\left(1-\left(\frac{3}{4}\right)^{25}\right)\cdot \:8}{1-\frac{3}{4}}

=\frac{8\left(-\left(\frac{3}{4}\right)^{25}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}

=\frac{8\left(-\frac{3^{25}}{4^{25}}+1\right)}{\frac{1}{4}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a}{\frac{b}{c}}=\frac{a\cdot \:c}{b}

=\frac{\left(1-\frac{3^{25}}{4^{25}}\right)\cdot \:8\cdot \:4}{1}

\mathrm{Multiply\:the\:numbers:}\:8\cdot \:4=32

=\frac{32\left(-\frac{3^{25}}{4^{25}}+1\right)}{1}

=\frac{32\cdot \frac{4^{25}-3^{25}}{4^{25}}}{1}               ∵ \mathrm{Join}\:1-\frac{3^{25}}{4^{25}}:\quad \frac{4^{25}-3^{25}}{4^{25}}

=32\cdot \frac{4^{25}-3^{25}}{4^{25}}

=\frac{\left(4^{25}-3^{25}\right)\cdot \:32}{4^{25}}

=\frac{2^5\left(4^{25}-3^{25}\right)}{2^{50}}        ∵ \mathrm{Factor}\:32:\ 2^5,  \mathrm{Factor}\:4^{25}:\ 2^{50}

so

=\frac{4^{25}-3^{25}}{2^{45}}        ∵ \mathrm{Cancel\:}\frac{\left(4^{25}-3^{25}\right)\cdot \:2^5}{2^{50}}:\quad \frac{4^{25}-3^{25}}{2^{45}}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{a\pm \:b}{c}=\frac{a}{c}\pm \frac{b}{c}

=\frac{4^{25}}{2^{45}}-\frac{3^{25}}{2^{45}}      

=32-\frac{3^{25}}{2^{45}}            ∵  \frac{4^{25}}{2^{45}}=32

=32-0.024        ∵  \frac{3^{25}}{2^{45}}=0.024

=31.98            

Therefore, the sum of the first 25 terms in this geometric series: 31.98

3 0
3 years ago
Bob raises Guinea Pigs and Chinchillas on his beachfront oasis. There are a total of 60,005 animals at the oasis. The number of
raketka [301]
Let named variables as you said g- guinea pigs and c- chinchillas
System of equation is:

First is:   c+ g = 60,005 
Second is:   c= 2g+5

When we replace second in first we get:

2g+5+g = 60,005 => 3g+5= 60,005 => 3g= 60,000

g=60.000/3 = 20,000 => g=20,000

When this result we replace in the second equation we get

c= 2 * 20,000 +5= 40,000+5 = 40,005

c= 40,005

Good luck!!!!




6 0
3 years ago
Other questions:
  • Why is there no commutative property for subtraction or division? Show examples.
    11·1 answer
  • Find the perimeter. note that the arc represents a semicircle use 3.14
    8·1 answer
  • What is 2 times 2 divided by 55
    15·1 answer
  • Decimals on the Number Line and Rounding Decimals
    8·1 answer
  • A 3" x 5" photo is enlarged so that length of the new photo is 7 in inches
    15·2 answers
  • A moving company charges 40$ plus 0.25$ per mile to rent a van. Another company charges 25$ plus o.35$ per mile to rent the same
    10·1 answer
  • There are 36 math books and 9 reading books. What is the ratio of the total number of books to the number of math books? Remembe
    5·1 answer
  • Please solve all the questions!!! :) will mark brainliest
    11·2 answers
  • Can someone please help me choose my freshman classes
    15·1 answer
  • Help please!!!!!!!!!!!!!
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!