1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hoa [83]
3 years ago
11

Find all the missing sides or angles in each right triangles

Mathematics
1 answer:
astra-53 [7]3 years ago
8 0
In previous lessons, we used the parallel postulate to learn new theorems that enabled us to solve a variety of problems about parallel lines:

Parallel Postulate: Given: line l and a point P not on l. There is exactly one line through P that is parallel to l.

In this lesson we extend these results to learn about special line segments within triangles. For example, the following triangle contains such a configuration:

Triangle <span>△XYZ</span> is cut by <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> where A and B are midpoints of sides <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> respectively. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is called a midsegment of <span>△XYZ</span>. Note that <span>△XYZ</span> has other midsegments in addition to <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>. Can you see where they are in the figure above?

If we construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and construct <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> respectively, we have the following figure and see that segments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> are midsegments of <span>△XYZ</span>.

In this lesson we will investigate properties of these segments and solve a variety of problems.

Properties of midsegments within triangles

We start with a theorem that we will use to solve problems that involve midsegments of triangles.

Midsegment Theorem: The segment that joins the midpoints of a pair of sides of a triangle is:

<span>parallel to the third side. half as long as the third side. </span>

Proof of 1. We need to show that a midsegment is parallel to the third side. We will do this using the Parallel Postulate.

Consider the following triangle <span>△XYZ</span>. Construct the midpoint A of side <span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Parallel Postulate, there is exactly one line though A that is parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>. Let’s say that it intersects side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at point B. We will show that B must be the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> and then we can conclude that <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

We must show that the line through A and parallel to side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> will intersect side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span> at its midpoint. If a parallel line cuts off congruent segments on one transversal, then it cuts off congruent segments on every transversal. This ensures that point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>.

Since <span><span><span>XA</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>AZ</span><span>¯¯¯¯¯¯¯</span></span></span>, we have <span><span><span>BZ</span><span>¯¯¯¯¯¯¯</span></span>≅<span><span>BY</span><span>¯¯¯¯¯¯¯¯</span></span></span>. Hence, by the definition of midpoint, point B is the midpoint of side <span><span>YZ</span><span>¯¯¯¯¯¯¯</span></span>. <span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span> is a midsegment of the triangle and is also parallel to <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

Proof of 2. We must show that <span>AB=<span>12</span>XY</span>.

In <span>△XYZ</span>, construct the midpoint of side <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span> at point C and midsegments <span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span> and <span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span> as follows:

First note that <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> by part one of the theorem. Since <span><span><span>CB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XZ</span><span>¯¯¯¯¯¯¯¯</span></span></span> and <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>∥<span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span></span>, then <span>∠<span>XAC</span>≅∠<span>BCA</span></span> and <span>∠<span>CAB</span>≅∠<span>ACX</span></span> since alternate interior angles are congruent. In addition, <span><span><span>AC</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>CA</span><span>¯¯¯¯¯¯¯¯</span></span></span>.

Hence, <span>△<span>AXC</span>≅△<span>CBA</span></span> by The ASA Congruence Postulate. <span><span><span>AB</span><span>¯¯¯¯¯¯¯¯</span></span>≅<span><span>XC</span><span>¯¯¯¯¯¯¯¯</span></span></span> since corresponding parts of congruent triangles are congruent. Since C is the midpoint of <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>, we have <span>XC=CY</span> and <span>XY=XC+CY=XC+XC=2AB</span> by segment addition and substitution.

So, <span>2AB=XY</span> and <span>AB=<span>12</span>XY</span>. ⧫

Example 1

Use the Midsegment Theorem to solve for the lengths of the midsegments given in the following figure.

M, N and O are midpoints of the sides of the triangle with lengths as indicated. Use the Midsegment Theorem to find

<span><span> A. <span>MN</span>. </span><span> B. The perimeter of the triangle <span>△XYZ</span>. </span></span><span><span> A. Since O is a midpoint, we have <span>XO=5</span> and <span>XY=10</span>. By the theorem, we must have <span>MN=5</span>. </span><span> B. By the Midsegment Theorem, <span>OM=3</span> implies that <span>ZY=6</span>; similarly, <span>XZ=8</span>, and <span>XY=10</span>. Hence, the perimeter is <span>6+8+10=24.</span> </span></span>

We can also examine triangles where one or more of the sides are unknown.

Example 2

<span>Use the Midsegment Theorem to find the value of x in the following triangle having lengths as indicated and midsegment</span> <span><span>XY</span><span>¯¯¯¯¯¯¯¯</span></span>.

By the Midsegment Theorem we have <span>2x−6=<span>12</span>(18)</span>. Solving for x, we have <span>x=<span>152</span></span>.

<span> Lesson Summary </span>
You might be interested in
Please help me on this
laiz [17]

Answer:

34

Step-by-step explanation:

Angles 3 and 7 are corresponding angles. When the lines defining the base of the corresponding angles are parallel (as in this case where a is parallel to b), then the angles are equal.

That's the heavy duty definition. It just means that corresponding angles in parallel lines are equal.

So if <3 = 34 degrees, then <7 = 34 degrees.

7 0
3 years ago
A biologist is studying rainbow trout that live in a certain river and she estimates their mean length to be 529 millimeters. As
vredina [299]

Answer:

See the book it will definitely help you

7 0
3 years ago
4x^2=27x+40<br> Solve by factoring
worty [1.4K]

Answer: hewo, there! your answer is below

x= -5/4

or x= 8

Step-by-step explanation:

step 1: Subtract 27x+40 from both sides.

4x2−(27x+40)=27x+40−(27x+40)

4x2−27x−40=0

Step 2: Factor left side of equation.

(4x+5)(x−8)=0

Step 3: Set factors equal to 0.

4x+5=0 or x−8=0

hope this helps you

have a great Day

Plz makr branilest

8 0
3 years ago
Which of these situations can be represented with an integer that, when combined with the
Paul [167]

Answer:

qwertiopadfghkklzcvbnmweyiosghklsghksfjkerui

8 0
3 years ago
Use benchmarks to estimate 16.8-5.94
Sunny_sXe [5.5K]
The estimated answer is 11. First you round 16.8 to 17 because the decimal is above 5. Then you round 5.94 to 6 because the first decimal place is greater than 5. Lastly you subtract 17 minus 5 to get 11.
7 0
3 years ago
Other questions:
  • What is the equation of the line perpendicular to 2x - 3y = 13 that passes through the point (-6, 5)?
    9·1 answer
  • Eduardo's average speed on his commute to work was 55 miles per hour. On the way home, he hit traffic and only averaged
    6·2 answers
  • Use the clues to find the mystery number. The mystery number is –
    12·2 answers
  • Why does paramcium never die​
    12·1 answer
  • What is 1.7 and 5.62 in expanded form ?
    7·2 answers
  • 247: 10^2 and 247*10^2 what is the different about the two answers
    5·1 answer
  • In a class with 30 students, there are 18 women and 12 men. What is the ratio of men to women in the class?
    13·1 answer
  • Find the missing side of each triangle !!
    12·1 answer
  • Please help me please please please please
    12·1 answer
  • Which of the following is not equal to 64? (the numbers after the comma are exponents
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!