Explanation:
During photosynthesis, molecules in leaves capture sunlight and energize electrons, which are then stored in the covalent bonds of carbohydrate molecules. That energy within those covalent bonds will be released when they are broken during cell respiration. How long lasting and stable are those covalent bonds? The energy extracted today by the burning of coal and petroleum products represents sunlight energy captured and stored by photosynthesis almost 200 million years ago.
Plants, algae, and a group of bacteria called cyanobacteria are the only organisms capable of performing photosynthesis. Because they use light to manufacture their own food, they are called photoautotrophs (“self-feeders using light”). Other organisms, such as animals, fungi, and most other bacteria, are termed heterotrophs (“other feeders”) because they must rely on the sugars produced by photosynthetic organisms for their energy needs. A third very interesting group of bacteria synthesize sugars, not by using sunlight’s energy, but by extracting energy from inorganic chemical compounds; hence, they are referred to as chemoautotrophs.
Answer:
The statement that best describes the vascular tissue in seed plants is that xylem carries water and nutrients from the roots to the rest of the plant.
Explanation:
Xylem corresponds to the tissue of the vascular plants that is responsible for the transport and distribution of liquids necessary for their development.
The main function of xylem is to<u> carry water, mineral salts and other nutrients -in the form of raw sap- from the root to the whole plant</u>, forming a network similar to the circulatory system of higher animals.
Answer:
0.153
Explanation:
We know the up-thrust on the fish, U = weight of water displaced = weight of fish + weight of air in air sacs.
So ρVg = ρ'V'g + ρ'V"g where ρ = density of water = 1 g/cm³, V = volume of water displaced, g = acceleration due to gravity, ρ'= density of fish = 1.18 g/cm³, V' = initial volume of fish, ρ"= density of air = 0.0012 g/cm³ and V" = volume of expanded air sac.
ρVg = ρ'V'g + ρ"V"g
ρV = ρ'V'g + ρ"V"
Its new body volume = volume of water displaced, V = V' + V"
ρ(V' + V") = ρ'V' + ρ"V"
ρV' + ρV" = ρ'V' + ρ"V"
ρV' - ρ"V' = ρ'V" - ρV"
(ρ - ρ")V' = (ρ' - ρ)V"
V'/V" = (ρ - ρ")/(ρ' - ρ)
= (1 g/cm³ - 0.0012 g/cm³)/(1.18 g/cm³ - 1 g/cm³)
= (0.9988 g/cm³ ÷ 0.18 g/cm³)
V'/V" = 5.55
Since V = V' + V"
V' = V - V"
(V - V")/V" = 5.55
V/V" - V"/V" = 5.55
V/V" - 1 = 5.55
V/V" = 5.55 + 1
V/V" = 6.55
V"/V = 1/6.55
V"/V = 0.153
So, the fish must inflate its air sacs to 0.153 of its expanded body volume
Actually, it is false. P-waves arrive first and then S-waves arrive.
Answer:
The correct answer is 50%.
Explanation:
In the given question, the table says that fruit color is determined by the incomplete dominance of allele R and R'. In the case of RR genotype the fruit color will be red and R'R' the food color will be yellow but in the heterozygous condition the color would be orange, so the cross between RR' and R'R' would be as follow:
Punnett square:
R R'
R' RR' R'R'
R' RR' R'R'
It is found by the given cross that the cross between RR' and R'R' would form two orange fruit plants out of four which is 50%