T=2π/|b|. The period of an equation of the form y = a sin bx is T=2π/|b|.
In mathematics the curve that graphically represents the sine function and also that function itself is called sinusoid or sinusoid. It is a curve that describes a repetitive and smooth oscillation. It can be represented as y(x) = a sin (ωx+φ) where a is the amplitude, ω is the angular velocity with ω=2πf, (ωx+φ) is the oscillation phase, and φ the initial phase.
The period T of the sin function is T=1/f, from the equation ω=2πf we can clear f and substitute in T=1/f.
f=ω/2π
Substituting in T=1/f:
T=1/ω/2π -------> T = 2π/ω
For the example y = a sin bx, we have that a is the amplitude, b is ω and the initial phase φ = 0. So, we have that the period T of the function a sin bx is:
T=2π/|b|
Answer:

Step-by-step explanation:
Using the rule of exponents
⇔
, then
=
= 
The answer would be 20 apples.
Answer:
3(-4y+z)/8
Step-by-step explanation:
hope that helps :)
Answer:
colder and warmer
Step-by-step explanation:
-13 is colder and -9 is warmer than -12