Answer:
The data we have is:
The acceleration is 3.2 m/s^2 for 14 seconds
Initial velocity = 5.1 m/s
initial position = 0m
Then:
A(t) = 3.2m/s^2
To have the velocity, we integrate over time, and the constant of integration will be equal to the initial velocity.
V(t) = (3.2m/s^2)*t + 5.1 m/s
To have the position equation, we integrate again over time, and now the constant of integration will be the initial position (that is zero)
P(t) = (1/2)*(3.2 m/s^2)*t^2 + 5.1m/s*t
Now, the final position refers to the position when the car stops accelerating, this is at t = 14s.
P(14s) = (1/2)*(3.2 m/s^2)*(14s)^2 + 5.1m/s*14s = 385m
So the final position is 385 meters ahead the initial position.
Just use a calculator.
but if this is not a joke
the answer is 24.94
Answer:
X=7
X=2
Step-by-step explanation:
Answer:
5 + 2(3 + 2x) = x + 3(x + 1) has no solution
Step-by-step explanation: