Answer:
C. ![Z=51^{\circ}](https://tex.z-dn.net/?f=Z%3D51%5E%7B%5Ccirc%7D)
Step-by-step explanation:
We have been given a triangle. We are asked to find the measure of angle Z using Law of cosines.
Law of cosines:
, where, a, b and c are sides opposite to angles A, B and C respectively.
Upon substituting our given values in law of cosines, we will get:
![16^2=19^2+18^2-2(19)(18)\cdot \text{cos}(Z)](https://tex.z-dn.net/?f=16%5E2%3D19%5E2%2B18%5E2-2%2819%29%2818%29%5Ccdot%20%5Ctext%7Bcos%7D%28Z%29)
![256=361+324-684\cdot \text{cos}(Z)](https://tex.z-dn.net/?f=256%3D361%2B324-684%5Ccdot%20%5Ctext%7Bcos%7D%28Z%29)
![256=685-684\cdot \text{cos}(Z)](https://tex.z-dn.net/?f=256%3D685-684%5Ccdot%20%5Ctext%7Bcos%7D%28Z%29)
![256-685=685-685-684\cdot \text{cos}(Z)](https://tex.z-dn.net/?f=256-685%3D685-685-684%5Ccdot%20%5Ctext%7Bcos%7D%28Z%29)
![-429=-684\cdot \text{cos}(Z)](https://tex.z-dn.net/?f=-429%3D-684%5Ccdot%20%5Ctext%7Bcos%7D%28Z%29)
![\frac{-429}{-684}=\frac{-684\cdot \text{cos}(Z)}{-684}](https://tex.z-dn.net/?f=%5Cfrac%7B-429%7D%7B-684%7D%3D%5Cfrac%7B-684%5Ccdot%20%5Ctext%7Bcos%7D%28Z%29%7D%7B-684%7D)
![0.627192982456=\text{cos}(Z)](https://tex.z-dn.net/?f=0.627192982456%3D%5Ctext%7Bcos%7D%28Z%29)
![\text{cos}(Z)=0.627192982456](https://tex.z-dn.net/?f=%5Ctext%7Bcos%7D%28Z%29%3D0.627192982456)
Now, we will use inverse cosine or arc-cos to solve for angle Z as:
![Z=\text{cos}^{-1}(0.627192982456)](https://tex.z-dn.net/?f=Z%3D%5Ctext%7Bcos%7D%5E%7B-1%7D%280.627192982456%29)
![Z=51.1566718^{\circ}](https://tex.z-dn.net/?f=Z%3D51.1566718%5E%7B%5Ccirc%7D)
![Z\approx 51^{\circ}](https://tex.z-dn.net/?f=Z%5Capprox%2051%5E%7B%5Ccirc%7D)
Therefore, the measure of angle Z is approximately 51 degrees.