5.61 x 10^8 (this might not be entirely right, haven’t used scientific notation in a while)
The heat transfer formula is;
Q = m * c * Δ T >>>> (1)
where, Q is the heat transfer
m = mass (gram)
c = the specific heat capacity (J/g)
Δ T = change in temperature
∵ we have one mole of Ethanol
∴ the weight of ethanol equals its molecular weight = (2*12)+(6*1)+(16) = 46 g
we will assume that the specific heat capacity of ethanol is 2.46 J/g (from google)
ΔT = 25 - 320 = - 295 C
By substitution in (1)
∴ Q = 2.46 * 46 * (-295) = - 33382.2 J
We can use the ideal gas law equation to find the pressure
PV = nRTwhere
P - pressure
V - volume - 2.6 x 10⁻³ m³
n - number of moles - 0.44 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values into the equation,
P x 2.6 x 10⁻³ m³ = 0.44 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
P = 419 281.41 Pa
101 325 Pa is equivalent to 1 atm
Therefore 419 281.41 Pa - 1/ 101 325 x 419 281.41 = 4.13 atm
Pressure is 4.13 atm
Answer:
The answer is option c which is gametes