Yes it is equal
75/100=15/20=3/4
Firstly , we will check continuity at x=1
we can use method
Suppose, f(x) is continuous at x=c
then it must satisfy
![\lim_{x \to c} f(x)=f(c)](https://tex.z-dn.net/?f=%20%20%5Clim_%7Bx%20%5Cto%20c%7D%20f%28x%29%3Df%28c%29%20%20)
![\lim_{x \to 1} f(x)=f(1)](https://tex.z-dn.net/?f=%20%20%5Clim_%7Bx%20%5Cto%201%7D%20f%28x%29%3Df%281%29%20%20)
firstly , we can find limit
![\lim_{x \to 1-} f(x)= \lim_{x \to 1-}(x+3)=1+3=4](https://tex.z-dn.net/?f=%20%20%5Clim_%7Bx%20%5Cto%201-%7D%20f%28x%29%3D%20%20%5Clim_%7Bx%20%5Cto%201-%7D%28x%2B3%29%3D1%2B3%3D4%20)
![\lim_{x \to 1+} f(x)= \lim_{x \to 1-}(3x+1)=3*1+1=4](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%201%2B%7D%20f%28x%29%3D%20%20%5Clim_%7Bx%20%5Cto%201-%7D%283x%2B1%29%3D3%2A1%2B1%3D4%20)
so, we get
![\lim_{x \to 1} f(x)= 4](https://tex.z-dn.net/?f=%20%5Clim_%7Bx%20%5Cto%201%7D%20f%28x%29%3D%204%20)
now, we can find f(1)
![f(1)=3*1+1=4](https://tex.z-dn.net/?f=%20f%281%29%3D3%2A1%2B1%3D4%20)
so, we got
![\lim_{x \to 1} f(x)=f(1) =4](https://tex.z-dn.net/?f=%20%20%5Clim_%7Bx%20%5Cto%201%7D%20f%28x%29%3Df%281%29%20%3D4%20)
so, this is continuous at x=1
Hence , option-D...........................Answer
Answer: - 16n - 31
Step-by-step explanation:
4 - 16n - 35
Answer:
Max's team 5.75
Williams team 5.6
Max's team had better run rate
Answer:
3-![\frac{b}{3}](https://tex.z-dn.net/?f=%5Cfrac%7Bb%7D%7B3%7D)
Step-by-step explanation: