Answer:
so x=5 1/3 and
y= -2 2/3
Step-by-step explanation:
x-3y= -2x+3y=16. First we need to move all variables to one side of the equation and whole numbers to the other side of the equation. I see
x-3y+2x-3y=16. -3y-3y equals to -6y. 2x+x=3x. so 3x-6y=16. Lets take out the -6y so our equation would be 3x=16. x would equal 5 1/3. Now lets put back -6y into our equation. Let's now substitute x as 0. 3 times 0 equals 0 so our equation would now be -6y=16 which equals to -2 2/3.
so x=5 1/3 and
y= -2 2/3
Step-by-step explanation:
- according to bodmas .... brackets come first so the numerator (2-7)²+5 is 2-7= -5² hence -25 +5
- so the answer to the numerator becomes -25 +5 which is -20
- so u get -20/3 which when simplified u will obtain -6 and 2/3
The question is biased towards a response of preferring to use weight-lifting machines because it uses the words "hard" to describe free weights and "easy" to describe the machines, and may persuade some people to choose the machine.
The sample is not biased because it doesn't choose specific women, it includes all women who visit the gym.
Answer:
<em>The area of the shaded part = 61.46</em>
<em />
Step-by-step explanation:
Assume the hypotenuse of the triangle is c (c>0)
As the triangle inscribed in the semi circle is the right angle triangle, its hypotenuse is equal to the diameter of the circle.
The hypotenuse of the triangle can be calculated by Pythagoras theorem as following: 
=> c = 10
So that the semi circle has the diameter = 10 => its radius = 5
- The total area of 2 semi circles is equal to the area of the circle with radius =5
=> The total area of 2 semi circles is:
x
= 25
- The area of a triangle inscribed in the semi circle is: 1/2 x a x b = 1/2 x
x
= 20
=> The area of 2 triangles inscribed in 2 semi circles is: 2 x 20 = 40
- The area of the square is:
= 
It can be seen that:
<em>The area of the shaded part = The area of the square - The total area of 2 semi circles + The total are of 2 triangles inscribed in semi circles </em>
<em>= 100 - 25</em>
<em> + 40 = 61.46</em>