Answer: c. 3.01
Step-by-step explanation:
The test statistic for difference between two population mean (when population standard deviation is known) is given by :
![z=\dfrac{\overline{x}_1-\overline{x}_2}{\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}}](https://tex.z-dn.net/?f=z%3D%5Cdfrac%7B%5Coverline%7Bx%7D_1-%5Coverline%7Bx%7D_2%7D%7B%5Csqrt%7B%5Cdfrac%7B%5Csigma_1%5E2%7D%7Bn_1%7D%2B%5Cdfrac%7B%5Csigma_2%5E2%7D%7Bn_2%7D%7D%7D)
, where
= Size of first sample
= Size of second sample
= Difference between two sample mean.
= standard deviation for population 1.
= standard deviation for population 2.
As per given , we have
![\overline{x}_2=\$6.25](https://tex.z-dn.net/?f=%5Coverline%7Bx%7D_2%3D%5C%246.25)
![\sigma_1=\$1](https://tex.z-dn.net/?f=%5Csigma_1%3D%5C%241)
![\sigma_2=\$0.95](https://tex.z-dn.net/?f=%5Csigma_2%3D%5C%240.95)
Substitute these values in formula , we get
![z=\dfrac{6.75-6.25}{\sqrt{\dfrac{(1)^2}{80}+\dfrac{(0.95)^2}{60}}}](https://tex.z-dn.net/?f=z%3D%5Cdfrac%7B6.75-6.25%7D%7B%5Csqrt%7B%5Cdfrac%7B%281%29%5E2%7D%7B80%7D%2B%5Cdfrac%7B%280.95%29%5E2%7D%7B60%7D%7D%7D)
![z=\dfrac{0.50}{\sqrt{0.0275416666667}}](https://tex.z-dn.net/?f=z%3D%5Cdfrac%7B0.50%7D%7B%5Csqrt%7B0.0275416666667%7D%7D)
![z=\dfrac{0.50}{0.165956821694}](https://tex.z-dn.net/?f=z%3D%5Cdfrac%7B0.50%7D%7B0.165956821694%7D)
![z=3.0128318613\approx3.01](https://tex.z-dn.net/?f=z%3D3.0128318613%5Capprox3.01)
Hence, the value of the test statistic is <u>3.01</u>.
Hence, the correct option is c. 3.01 .