1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
koban [17]
3 years ago
12

Apply the distributive to a factor out the greatest common factor 64 + 40

Mathematics
1 answer:
NikAS [45]3 years ago
8 0

Factors of 64:

1 2 4 8 16 32 64

Factors of 40:

1 2 4 5 8 10 20 40

8 is the GCF

8(8+ 5)

You might be interested in
Will mark brainliest!!!Solve for each variable
Kamila [148]

Answer:

n=5, m = 4

Step-by-step explanation:

It is a parallelogram so m+8 = 3m and 2n-1 = 9

7 0
3 years ago
Rewrite the equation from part A by factoring tge side that contains the variable r. Part A: 3r-6
Vilka [71]

Answer:

im stuck on this to

Step-by-step explanation:

4 0
3 years ago
Suppose we roll a fair die and let X represent the number on the die. (a) Find the moment generating function of X. (b) Use the
Likurg_2 [28]

Answer:

(a)  moment generating function for X is \frac{1}{6}\left(e^{t}+e^{2 t}+e^{2 t}+e^{4 t}+e^{5 t}+e^{6 t}\right)

(b) \mathrm{E}(\mathrm{X})=\frac{21}{6} \text { and } E\left(X^{2}\right)=\frac{91}{6}

Step-by step explanation:

Given X represents the number on die.

The possible outcomes of X are 1, 2, 3, 4, 5, 6.

For a fair die, P(X)=\frac{1}{6}

(a) Moment generating function can be written as M_{x}(t).

M_x(t)=\sum_{x=1}^{6} P(X=x)

M_{x}(t)=\frac{1}{6} e^{t}+\frac{1}{6} e^{2 t}+\frac{1}{6} e^{3 t}+\frac{1}{6} e^{4 t}+\frac{1}{6} e^{5 t}+\frac{1}{6} e^{6 t}

M_x(t)=\frac{1}{6}\left(e^{t}+e^{2 t}+e^{3 t}+e^{4 t}+e^{5 t}+e^{6 t}\right)

(b) Now, find E(X) \text { and } E\((X^{2}) using moment generating function

M^{\prime}(t)=\frac{1}{6}\left(e^{t}+2 e^{2 t}+3 e^{3 t}+4 e^{4 t}+5 e^{5 t}+6 e^{6 t}\right)

M^{\prime}(0)=E(X)=\frac{1}{6}(1+2+3+4+5+6)  

\Rightarrow E(X)=\frac{21}{6}

M^{\prime \prime}(t)=\frac{1}{6}\left(e^{t}+4 e^{2 t}+9 e^{3 t}+16 e^{4 t}+25 e^{5 t}+36 e^{6 t}\right)

M^{\prime \prime}(0)=E(X)=\frac{1}{6}(1+4+9+16+25+36)

\Rightarrow E\left(X^{2}\right)=\frac{91}{6}  

Hence, (a) moment generating function for X is \frac{1}{6}\left(e^{t}+e^{2 t}+e^{3 t}+e^{4 t}+e^{5 t}+e^{6 t}\right).

(b) \mathrm{E}(\mathrm{X})=\frac{21}{6} \text { and } E\left(X^{2}\right)=\frac{91}{6}

6 0
4 years ago
PLEASE HELP ME TO SOLVE THIS QUESTION WITH STEP-BY-STEP. THANK YOU!!!​
Alexeev081 [22]

Answer:

Can u show the whole question

5 0
3 years ago
Read 2 more answers
If the angles of a triangle are (2y - 5)degrees, (y + 20)degrees, and (3y-5) degrees what are the values of the angles​
NNADVOKAT [17]

Answer:

<h3>\boxed{ \boxed{ \bold{ \sf{51.68  \: , \: 48.34 \:,  \: 80.02}}}}</h3>

Step-by-step explanation:

Let's solve:

As we know that the sum of angles of traingle adds to 180°

\sf{2y - 5 + y + 20 + 3y - 5 = 180}

Collect like terms

⇒\sf{6y - 5 + 20 - 5 = 180}

⇒\sf{6y   + 15 - 5 = 180}

⇒\sf{6y + 10 = 180}

Move constant to right hand side and change it's sign

⇒\sf{6y = 180 - 10}

Calculate the difference

⇒\sf{6y = 170}

Divide both sides of the equation by 6

⇒\sf{ \frac{6y}{6}  =  \frac{170}{6} }

Calculate

⇒\sf{y = 28.34}

Now, let's replace the value:

⇒\sf{2y - 5 = 2 \times 28.34 - 5 = 51.68}

⇒\sf{y + 20 = 28.34  + 20 = 48.34}

⇒\sf{3y - 5 = 3 \times 28.34 - 5 = 80.02}

Hope I helped!

Best regards!!

8 0
3 years ago
Read 2 more answers
Other questions:
  • Evaluate <br> (86)(8-3)(4-2)<br> 2<br> .<br><br> A) 8 <br> B) 16 <br> C) 32 <br> D) 64
    13·1 answer
  • The graph shown below is a scatter plot:
    15·1 answer
  • A small airplane can carry less than 1,050 pounds of luggage and mail. The mail for the day weighs 490 pounds. If each passenger
    15·1 answer
  • How do you reduce 75/100?
    8·2 answers
  • Use the following cell phone airport data speeds​ (Mbps) from a particular network. Find the percentile corresponding to the d
    5·1 answer
  • How many inches are in 12 feet
    9·2 answers
  • Solve for w. Give an exact answer in simplified form. 53w+13 &lt; 56w + 16
    9·1 answer
  • Find the area. Thank you!
    6·2 answers
  • 6) On a given registration day, 45 CJ majors and 25 CIS majors arrive. What is the empirical probability that the next student t
    14·1 answer
  • A group of 17 students participated in a quiz competition. Their scores are shown below:
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!