I believe the answers to be 75+5x=y
You can solve this by using the system of equations.
Jan - 4.95 = 2H + 3C
Wayne - 5.45 = 3H + 2C
Use elimination.
-3(2H + 3C = 4.95)
2(3H + 2C = 5.45)
Solve. And you'll get:
-6H + (-9C) = -14.85
6H + 4C = 10.9
Cross out -6H and 6H because they cancel out. And you're left with:
-9C = -14.85
4C = 10.9
Add -9C with 4C, and -14.85 with 10.9.
-5C = -3.95
Divide each side with -5.
C = $0.79
Now to figure out what H is, just substitute the C in one of the equations with 0.79.
5.45 = 3H + 2(0.79)
5.45 = 3H + 1.58
-1.58 -1.58
3.87 = 3H
3.87/3 = 3/3(H)
1.29 = H
Finished!
Answer: see proof below
<u>Step-by-step explanation:</u>

Use the following Identities:
sec Ф = 1/cos Ф
cos² Ф + sin² Ф = 1
<u>Proof LHS → RHS</u>






Answer:
0.1151 = 11.51% probability of completing the project over 20 days.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Expected completion time of the project = 22 days.
Variance of project completion time = 2.77
This means that 
What is the probability of completing the project over 20 days?
This is the p-value of Z when X = 20, so:



has a p-value of 0.1151.
0.1151 = 11.51% probability of completing the project over 20 days.