Answer:10
Step-by-step explanation:
The area of the composite solid in the image given is: 399.6 m².
<h3>What is the Surface Area of a Composite Solid?</h3>
The surface are of the composite solid = area of the 3 triangular face of the top solid + area of the triangular base of the bottom solid + 3(area of rectangular face of the bottom solid).
Area of the 3 triangular face of the top solid = 3(1/2bh) = 3(1/2 × 8 × 7) = 84 m²
Area of the triangular base of the bottom solid = 1/2bh = 1/2 × 8 × 6.9 = 27.6 m²
3(area of rectangular face of the bottom solid) = 3(length × width) = 3(12 × 8) = 288 m²
Surface area of the solid = 84 + 27.6 + 288 = 399.6 m²
Learn more about surface area of composite solids on:
brainly.com/question/17065613
#SPJ1
Answer:
3) |−70 − 15| = |−85| = 85 units
Step-by-step explanation:
Absolute value ignores negative values so the equation when finding the distance between −70 and 15 is 70 + 15 which equals 85.
Answer:
Figure 3: 28.5 units²
Figure 4: 33 units²
Figure 5: 25 units²
Figure 6: 30 units²
Figure 7: 25 units²
Figure 8: 32 units²
Reasons:
Figure 3 consists of<u> </u><u>2</u> shapes, A <u>rectangle </u>and a <u>square</u>
████████ ◣
rectangle: ████████ triangle: █◣
████████ ██◣
rectangle:
to calculate a <em><u>rectangle's </u></em>area: multiply the lengths of the width and height:
████████= width 8 █
█ =height 3
█

now substitute the values of W and H:

<u>rectangle area = </u><u>24</u>
Triangle:
to find the area of a <u><em>triangle</em></u>, multiply the width and height and divide by two:
◣ + ◣ = █ 0.5 + 0.5 = 1
█
███=width 3 █ =height 3
█

now substitute W and H


<u>Triangle area:</u><u> 4.5</u>
Now add the Rectangle Area To the triangle Area:
4.5 + 24 = 28.5
Final answer:
AREA =2 8.5
hope this helps!
Answer:
<em>Your</em><em> </em><em>question </em><em>is</em><em> </em><em>incomplete </em><em>.</em><em>.</em>