Answer:
a) ![\frac{B-\frac{A+5B}{6}}{B-A}= \frac{6B -A-5B}{6(B-A)}=\frac{B-A}{6(B-A)}=\frac{1}{6}](https://tex.z-dn.net/?f=%5Cfrac%7BB-%5Cfrac%7BA%2B5B%7D%7B6%7D%7D%7BB-A%7D%3D%20%5Cfrac%7B6B%20-A-5B%7D%7B6%28B-A%29%7D%3D%5Cfrac%7BB-A%7D%7B6%28B-A%29%7D%3D%5Cfrac%7B1%7D%7B6%7D)
b) ![P(X>1) = 1-P(X\leq 1)=1-\int_{0}^1 \frac{1^{2} x^{2-1} e^{- x}}{\gamma(2)}=0.736](https://tex.z-dn.net/?f=P%28X%3E1%29%20%3D%201-P%28X%5Cleq%201%29%3D1-%5Cint_%7B0%7D%5E1%20%5Cfrac%7B1%5E%7B2%7D%20x%5E%7B2-1%7D%20e%5E%7B-%20x%7D%7D%7B%5Cgamma%282%29%7D%3D0.736)
Step-by-step explanation:
Part a
We assume that the parachutist lands at random point in the interval (x=A,y=B) we have a continuous random variable X. And the distribution of X would be uniform
. And the density function would be given by:
![f(x) =\frac{1}{B-A} , A](https://tex.z-dn.net/?f=f%28x%29%20%3D%5Cfrac%7B1%7D%7BB-A%7D%20%2C%20A%20%3Cx%3CB)
And 0 for other case.
The operation fails, if parachutist's distance to A is more than five times as much as her distance to B.
So the point P in the interval (A,B) at which the distance to A is exactly 5 times the distance to B is given by:
![P= A + \frac{5}{6} (B-A)= \frac{6A +5B -5A}{6}=\frac{A+5B}{6}](https://tex.z-dn.net/?f=P%3D%20A%20%2B%20%5Cfrac%7B5%7D%7B6%7D%20%28B-A%29%3D%20%5Cfrac%7B6A%20%2B5B%20-5A%7D%7B6%7D%3D%5Cfrac%7BA%2B5B%7D%7B6%7D)
And we can find the probability desired like this:
![P(d(P,A) \geq 5 d(P,B))= P(\frac{A+5B}{6} < X< B)](https://tex.z-dn.net/?f=P%28d%28P%2CA%29%20%5Cgeq%205%20d%28P%2CB%29%29%3D%20P%28%5Cfrac%7BA%2B5B%7D%7B6%7D%20%3C%20X%3C%20B%29)
And from the cumulative distribution function of X ficen by
we got:
![\frac{B-\frac{A+5B}{6}}{B-A}= \frac{6B -A-5B}{6(B-A)}=\frac{B-A}{6(B-A)}=\frac{1}{6}](https://tex.z-dn.net/?f=%5Cfrac%7BB-%5Cfrac%7BA%2B5B%7D%7B6%7D%7D%7BB-A%7D%3D%20%5Cfrac%7B6B%20-A-5B%7D%7B6%28B-A%29%7D%3D%5Cfrac%7BB-A%7D%7B6%28B-A%29%7D%3D%5Cfrac%7B1%7D%7B6%7D)
Part b
For this case we assume that ![X\sim Gamma (2,1)](https://tex.z-dn.net/?f=X%5Csim%20Gamma%20%282%2C1%29)
On this case we assume that ![\alpha=2, \beta= 1](https://tex.z-dn.net/?f=%5Calpha%3D2%2C%20%5Cbeta%3D%201)
The density function for the Gamma distribution is given by:
![P(X)= \frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\gamma(\alpha)}](https://tex.z-dn.net/?f=P%28X%29%3D%20%5Cfrac%7B%5Cbeta%5E%7B%5Calpha%7D%20x%5E%7B%5Calpha-1%7D%20e%5E%7B-%5Cbeta%20x%7D%7D%7B%5Cgamma%28%5Calpha%29%7D)
And on this case we can find the probability using the complement rule like this:
![P(X>1) = 1-P(X\leq 1)=0.736](https://tex.z-dn.net/?f=P%28X%3E1%29%20%3D%201-P%28X%5Cleq%201%29%3D0.736)
We can solve this problem with the following excel code:
"=1-GAMMA.DIST(1;2;1;TRUE)"
And if we do it by hand we need to do this:
![P(X>1) = 1-P(X\leq 1)=1-\int_{0}^1 \frac{1^{2} x^{2-1} e^{- x}}{\gamma(2)}=0.736](https://tex.z-dn.net/?f=P%28X%3E1%29%20%3D%201-P%28X%5Cleq%201%29%3D1-%5Cint_%7B0%7D%5E1%20%5Cfrac%7B1%5E%7B2%7D%20x%5E%7B2-1%7D%20e%5E%7B-%20x%7D%7D%7B%5Cgamma%282%29%7D%3D0.736)