A plastic skeleton is
Answer: B. a physical model.
The world has lots of different kinds of models. A mathematical model might be a ball travels according to the equation
. This isn't that. A computer model would be a program that somehow simulates a skeleton in the computer, this isn't that either. Our skeleton is an actual physical model just like a model airplane.
Answer:
Area≈61.79
Step-by-step explanation:
used a calculator bruh
Answer:
The 95% confidence interval estimate of the population mean rating for Miami is (6.0, 7.5).
Step-by-step explanation:
The (1 - <em>α</em>)% confidence interval for the population mean, when the population standard deviation is not provided is:

The sample selected is of size, <em>n</em> = 50.
The critical value of <em>t</em> for 95% confidence level and (<em>n</em> - 1) = 49 degrees of freedom is:

*Use a <em>t</em>-table.
Compute the sample mean and sample standard deviation as follows:
![\bar x=\frac{1}{n}\sum X=\frac{1}{50}\times [1+5+6+...+10]=6.76\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{49}\times 31.12}=2.552](https://tex.z-dn.net/?f=%5Cbar%20x%3D%5Cfrac%7B1%7D%7Bn%7D%5Csum%20X%3D%5Cfrac%7B1%7D%7B50%7D%5Ctimes%20%5B1%2B5%2B6%2B...%2B10%5D%3D6.76%5C%5C%5C%5Cs%3D%5Csqrt%7B%5Cfrac%7B1%7D%7Bn-1%7D%5Csum%20%28x-%5Cbar%20x%29%5E%7B2%7D%7D%3D%5Csqrt%7B%5Cfrac%7B1%7D%7B49%7D%5Ctimes%2031.12%7D%3D2.552)
Compute the 95% confidence interval estimate of the population mean rating for Miami as follows:


Thus, the 95% confidence interval estimate of the population mean rating for Miami is (6.0, 7.5).
Answer:
C) As x approaches positive infinity, f(x) approaches positive infinity
Step-by-step explanation:
- The domain is NOT all real numbers as x is either smaller than or bigger than 0, and smaller than or bigger than 2. So x ≠ 0 and x ≠ 2.
- This implies that there are asymptotes at x=0 and x=2.
Therefore, the function is NOT continuous.
- The function is NOT increasing over its entire domain as
f(x) = -x² -4x + 1 is decreasing for its given domain of 0<x<2