1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
6

I don’t really understand can someone help

Mathematics
1 answer:
zavuch27 [327]3 years ago
8 0
The answer is D.) x < 0
You might be interested in
Please Help. Find the area. Thank you
Andru [333]

Answer:

432 yd squared

Step-by-step explanation:

This is a parallelogram. The area of a parallelogram is denoted by: A = bh, where b is the base and h is the height. Here, the base is b = 19 1/5 and the height is h = 22 1/2. Plug these in:

A = bh = (19 1/5) * (22 1/2)

To make this simpler, let's convert the numbers into decimals. 1/5 is just 0.2 so 19 1/5 is 19.2. 1/2 is just 0.5, so 22 1/2 is 22.5. Now we have:

A = 19.2 * 22.5 = 432

Thus the area is 432 yd squared.

Hope this helps!

7 0
3 years ago
Read 2 more answers
Cheyenne is playing a board game. Her score was - 130 at the start of her turn, and at the end of her turn
Svet_ta [14]

Answer: -245

Step-by-step explanation: The reason is because if you add -245 to -130 you will get her present score which is -375.

-245 + (-130)

6 0
4 years ago
Help I’m almost out of time
VladimirAG [237]

Answer: First option.

Step-by-step explanation:

You can idenfity in the figure that \angle FCE is formed by two secants that intersect outside of the given circle.

It is important to remember that, by definition:

 Angle\ formed\ by\ two\ Secants=\frac{1}{2}( Difference\ of\ intercepted\ Arcs)

Knowing this, you can set up the following equation:

m\angle FCE=\frac{1}{2}(BD-FE)

Therefore, you must substitute values into the equation and then evaluate, in order to find the measure of the angle \angle FCE.

This is:

m\angle FCE=\frac{1}{2}(112\°-38\°)\\\\m\angle FCE=37\°

6 0
3 years ago
            Find the approximate solution of this system of equations.
Montano1993 [528]
Y = |x² - 3x + 1|
y = x - 1

|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1)       or      |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1)    or    |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1        or         |x² - 3x + 1| = -x + 1
  x² - 3x + 1 = x - 1         or          x² - 3x + 1 = -x + 1
        - x        - x                                + x         + x
  x² - 4x + 1 = -1           or            x² - 2x + 1 = 1
              + 1 + 1                                       - 1 - 1
  x² - 4x + 1 = 0              or           x² - 2x + 0 = 0
  x = -(-4) ± √((-4)² - 4(1)(1))    or    x = -(-2) ± √((-2)² - 4(1)(0))
                      2(1)                                             2(1)
  x = 4 ± √(16 - 4)            or            x = 2 ± √(4 - 0)
                 2                                                 2
  x = 4 ± √(12)              or               x = 2 ± √(4)
             2                                                  2
 x = 4 ± 2√(3)               or               x = 2 ± 2
             2                                                2
 x = 2 ± √(3)                or                x = 1 ± 1
 x = 2 + √(3)  or  x = 2 - √(3)   or    x = 1 + 1    or    x = 1 - 1
                                                      x = 2       or       x = 0
y = x - 1          or           y = x - 1                            or    y = x - 1   or    y = x - 1
y = (2 + √(3)) - 1    or    y = (2 - √(3)) - 1          or         y = 2 - 1    or    y = 0 - 1
y = 2 - 1 + √(3)     or      y = 2 - 1 - √(3)          or           y = 1      or       y = -1
y = 1 + √(3)        or        y = 1 - √(3)               (x, y) = (2, 1)    or    (x, y) = (0, -1)
       (x, y) = (2 ± √(3), 1 ± √(3))

The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.
4 0
3 years ago
An angle's complement is 35°. Find the measure of its supplement. A) 55° B) 65° C) 125° D) 155° E) 180°
kenny6666 [7]

Answer:

C) 125°

Step-by-step explanation:

Supplementary angles add to 180 degrees.  Complementary angles add to 90

An angle's complement is 35°.

35+x =90

Subtract 35 from each side

35 -35+x = 90-35

x = 55

We want to find the supplement of this angle

55+y = 180

Subtract 55 from each side

55-55+y = 180-55

y= 125

The angle is 55 so its supplement is 125

7 0
3 years ago
Other questions:
  • Which of the following is true regarding the solution to the logarithmic equation below?
    6·2 answers
  • How can you write 9/20 as a decimal
    15·2 answers
  • What is 32 / 10 equal
    6·2 answers
  • Can someone help asap please
    10·1 answer
  • Hi do you want which is greater 0.75 x 81 or 0.9 x 81.
    8·2 answers
  • Please help<br>simplify the expression <br>a²b⁴-b²a⁴/ab(a+b)​
    12·1 answer
  • If f(x)=35x+25 <br> and g(x)=22x+18 <br> find 5f(4)+2g(10)
    10·1 answer
  • I need the answer ASAP.
    9·2 answers
  • HELP ILL MARK BRAINLIEST
    5·1 answer
  • Solving Equations with the Variable on Each Side
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!