Answer:
<h2>y-7=(x-5)</h2>
Step-by-step explanation:
<h3>to understand the solving steps</h3><h3>you need to know about</h3>
- linear equation i.g point-slope
- PEMDAS
<h3>given:</h3>
- m=1
- (x1,y1)=(5,7)
<h3>let's solve:</h3>
point-slope form is y-y1=m(x-x1)
so the point-slope equation is
<h3>y-7=1(x-5)</h3><h2>=y-7=(x-5)</h2>
Answer:
3
Step-by-step explanation:
Volume of a cone
V = pi x r^2 x h/3
So plug in the values we have
30pi = pi x r^2 x 10/3
30 = r^2 10/3
9 = r^2
3 = r
The trigonometric identity (cos⁴θ - sin⁴θ)/(1 - tan⁴θ) = cos⁴θ
<h3>
How to solve the trigonometric identity?</h3>
Since (cos⁴θ - sin⁴θ)/(1 - tan⁴θ) = [(cos²θ)² - (sin²θ)²]/[1 - (tan²θ)²]
Using the identity a² - b² = (a + b)(a - b), we have
(cos⁴θ - sin⁴θ)/(1 - tan⁴θ) = [(cos²θ)² - (sin²θ)²]/[1 - (tan²θ)²]
= (cos²θ - sin²θ)(cos²θ + sin²θ)/[(1 - tan²θ)(1 + tan²θ)] =
= (cos²θ - sin²θ) × 1/[(1 - tan²θ)sec²θ] (since (cos²θ + sin²θ) = 1 and 1 + tan²θ = sec²θ)
Also, Using the identity a² - b² = (a + b)(a - b), we have
(cos²θ - sin²θ) × 1/[(1 - tan²θ)sec²θ] = (cosθ - sinθ)(cosθ + sinθ)/[(1 - tanθ)(1 + tanθ)sec²θ]
= (cosθ - sinθ)(cosθ + sinθ)/[(cosθ - sinθ)/cosθ × (cosθ + sinθ)/cosθ × sec²θ]
= (cosθ - sinθ)(cosθ + sinθ)/[(cosθ - sinθ)(cosθ + sinθ)/cos²θ × 1/cos²θ]
= (cosθ - sinθ)(cosθ + sinθ)cos⁴θ/[(cosθ - sinθ)(cosθ + sinθ)]
= 1 × cos⁴θ
= cos⁴θ
So, the trigonometric identity (cos⁴θ - sin⁴θ)/(1 - tan⁴θ) = cos⁴θ
Learn more about trigonometric identities here:
brainly.com/question/27990864
#SPJ1
To find c you use cosine or adjacent/hypotenuse. To set up your equation it’ll look like h=16/cos(21). h=hypotenuse which is what your solving for. You should get 17.1383199. I’m not sure what your supposed round to so I gave the full answer.