Answer: ...well can you be a little specific please¿
Step-by-step explanation:
Answer:
Options (1) and (5)
Step-by-step explanation:
Expression that defines the function is,
![f(x)=\frac{1}{2}x+\frac{3}{2}](https://tex.z-dn.net/?f=f%28x%29%3D%5Cfrac%7B1%7D%7B2%7Dx%2B%5Cfrac%7B3%7D%7B2%7D)
Option 1
![f(-\frac{1}{2})=\frac{1}{2}(-\frac{1}{2})+\frac{3}{2}](https://tex.z-dn.net/?f=f%28-%5Cfrac%7B1%7D%7B2%7D%29%3D%5Cfrac%7B1%7D%7B2%7D%28-%5Cfrac%7B1%7D%7B2%7D%29%2B%5Cfrac%7B3%7D%7B2%7D)
![=-\frac{1}{4}+\frac{3}{2}](https://tex.z-dn.net/?f=%3D-%5Cfrac%7B1%7D%7B4%7D%2B%5Cfrac%7B3%7D%7B2%7D)
![=-\frac{1}{4}+1+\frac{1}{2}](https://tex.z-dn.net/?f=%3D-%5Cfrac%7B1%7D%7B4%7D%2B1%2B%5Cfrac%7B1%7D%7B2%7D)
![=1+\frac{1}{4}](https://tex.z-dn.net/?f=%3D1%2B%5Cfrac%7B1%7D%7B4%7D)
![=1\frac{1}{4}](https://tex.z-dn.net/?f=%3D1%5Cfrac%7B1%7D%7B4%7D)
So,
is false.
Option 2
f(0) = ![\frac{1}{2}(0)+\frac{3}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%280%29%2B%5Cfrac%7B3%7D%7B2%7D)
= ![\frac{3}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%7D%7B2%7D)
True.
Option 3
f(1) = ![\frac{1}{2}(1)+\frac{3}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%281%29%2B%5Cfrac%7B3%7D%7B2%7D)
= ![\frac{3+1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B3%2B1%7D%7B2%7D)
= 2
Therefore, f(1) = -1 is false.
Option 4
![f(2)=\frac{1}{2}(2)+\frac{3}{2}](https://tex.z-dn.net/?f=f%282%29%3D%5Cfrac%7B1%7D%7B2%7D%282%29%2B%5Cfrac%7B3%7D%7B2%7D)
![=1+1+\frac{1}{2}](https://tex.z-dn.net/?f=%3D1%2B1%2B%5Cfrac%7B1%7D%7B2%7D)
![=2\frac{1}{2}](https://tex.z-dn.net/?f=%3D2%5Cfrac%7B1%7D%7B2%7D)
Therefore, f(2) = 1 is false.
Option 5
f(4)
![=2+\frac{3}{2}](https://tex.z-dn.net/?f=%3D2%2B%5Cfrac%7B3%7D%7B2%7D)
![=\frac{4+3}{2}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B4%2B3%7D%7B2%7D)
![=\frac{7}{2}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B7%7D%7B2%7D)
True.
Options (1) and (5) are the correct options.
Solution
Switch sides so that m is on the left side
m/r = 2r
Them multiply both sides by r
mr/r = 2rr
Now simplify the equation
m = 2r^2
Therefore the equation evaluates to
m = 2r squared by 2
You would need four busses