In this case we are dealing with the pythagorean theorm involving right angled triangles. This theorm states that a^2 + b^2 = c^2 which means the square of the hypotenuse (side c, opposite the right angle) is equal to the square of the remaining two sides.
In this case we will say that a = 3963 miles which is the radius of the earth. c is equal to the radius of the earth plus the additional altitude of the space station which is 250 miles; therefore, c = 4213 miles. We must now solve for the value b which is equal to how far an astronaut can see to the horizon.
(3963)^2 + b^2 = (4213)^2
b^2 = 2,044,000
b = 1430 miles.
The astronaut can see 1430 miles to the horizon.
Answer:
The answer is option 4.
Step-by-step explanation:
As there is a <em>M</em><em>o</em><em>d</em><em>u</em><em>l</em><em>u</em><em>s</em><em> </em><em>s</em><em>i</em><em>g</em><em>n</em><em> </em>so the answer will be always positive.
e.g
|1.2| = 1.2
|-5.6| = 5.6 (always interested in the positive value)
Answer:
Step-by-step explanation:
x2 - 4x - 12 = 0
x2 - 6x + 2x - 12= 0
x(x - 6) + 2(x - 6) = 0
x + 2 = 0
x = - 2
x - 6 = 0
x = 6
1 + 7 - 6 + 99 = 101
Step-by-step explanation:
7 + 1 = 8
8 - 6 = 2
99 + 2 = 101
<em><u>H</u></em><em><u>o</u></em><em><u>p</u></em><em><u>e</u></em><em><u> </u></em><em><u>t</u></em><em><u>o</u></em><em><u> </u></em><em><u>b</u></em><em><u>e</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>e</u></em><em><u>s</u></em><em><u>t</u></em><em><u>!</u></em><em><u> </u></em><em><u>#</u></em><em><u>S</u></em><em><u>p</u></em><em><u>r</u></em><em><u>e</u></em><em><u>a</u></em><em><u>d</u></em><em><u>T</u></em><em><u>h</u></em><em><u>e</u></em><em><u>K</u></em><em><u>n</u></em><em><u>o</u></em><em><u>w</u></em><em><u>l</u></em><em><u>e</u></em><em><u>d</u></em><em><u>g</u></em><em><u>e</u></em>