We won't have a function if for same value of x in (x,y) we get different values y.
So first step: figure out k so that the first coordinate (x) is the same:
3k-4=4k | solve for k
k = -4
no check the values y for the elements of the relation
x = 3k-4 = -12-4=-16
so at -16 we get (-16,16) and (-16, 32), which mean for k=-4 the relation is not a function.
Let me know if you have any questions.
Cool! So OK I'll take you through it.
You just need to take everything 1 step at a time, as you might already know.
First
3 to the second is 9
Second
The first part included like this 9*(3 to the third) which is 243
Third
The second part is included into the question like 243*(3 to the fourth) which is 243*81
Fourth
243*81 = 19,683
Your Answer
(3^2)*(3^3)*3^4) = 19,693
Hope That Helps and Correct Me If I'm Wrong!
Answer:
BC < CE < BE < ED < BD
Step-by-step explanation:
In the triangle BCE,
m∠BEC + m∠BCE + m∠CBE = 180°
m∠BEC + 81° + 54° = 180°
m∠BEC = 180 - 135
m∠BEC = 45°
Order of the angles from least to greatest,
m∠BEC < m∠CBE > mBCE
Sides opposite to these sides will be in the same ratio,
BC < CE < BE ----------(1)
Now in ΔBED,
m∠BEC + m∠BED = 180°
m∠BED = 180 - 45
= 135°
Now, m∠BDE + m∠BED + DBE = 180°
11° + 135°+ m∠DBE = 180°
m∠DBE = 180 - 146
= 34°
Order of the angles from least to greatest will be,
∠BDE < ∠DBE < ∠BED
Sides opposite to these angles will be in the same order.
BE < ED < BD ----------(2)
From relation (1) and (2),
BC < CE < BE < ED < BD
Answer:
a. a[1] = 3; a[n] = 2a[n-1]
b. a[n] = 3·2^(n-1)
c. a[15] = 49,152
Step-by-step explanation:
Each term of the given sequence is 2 times the previous term. (This description is the basis of the recursive formula.) That is, the terms of the given sequence have a common ratio of 2. This means the sequence is geometric, so the formulas for explicit and recursive rules for a geometric sequence apply.
The first term is 3, and the common ratio is 2.
<h3>(a)</h3>
The recursive rule is ...
a[1] = 3
a[n] = 2×a[n-1]
__
<h3>(b)</h3>
The explicit rule is ...
a[n] = a[1]×r^(n-1)
a[n] = 3×2^(n-1)
__
<h3>(c)</h3>
The 15th term is ...
a[15] = 3×2^(15-1) = 3×2^14
a[15] = 49,152
Number of combinations = (6x5) ÷ 2 = 15
Answer:There are 15 combinations