Answer:
x = -2, y=1
Step-by-step explanation:
x-7y=-9---------------------equation 1
-x+8y=10-------------------equation 2
From equation 1, make x the subject of formula
x=7y-9----------------------equation 3
substituting x=7y-9 in equation 2,
-(7y-9)+8y=10
Expanding bracket
-7y+9+8y=10
Collecting like terms
8y-7y=10-9
y=1
substituting y=1 in 3
x=7(1)-9
x=7-9
x=-2
6a+8b; when a variable is next to a coefficient then that means they are multiplying each other, we just don't know what a or b is.
Simplifies to:
1.690196x+396.139706=2
Let's solve your equation step-by-step.
1.690196x+396.139706=2
Step 1: Subtract 396.139706 from both sides.
1.690196x+396.139706-396.139706=2-396.139706
1.690196x=-394.139706
Step 2: Divide both sides by 1.690196.
1.690196x/1.690196 -394.139706/1.690196
x= -233.191716
Answer: x= -233.191716
Check the picture below, so pretty much reaches its maximum height at the vertex, now let's take a peek at the equation above hmmmm
![~~~~~~\textit{vertical parabola vertex form} \\\\ y=a(x- h)^2+ k\qquad \begin{cases} \stackrel{vertex}{(h,k)}\\\\ \stackrel{"a"~is~negative}{op ens~\cap}\qquad \stackrel{"a"~is~positive}{op ens~\cup} \end{cases} \\\\[-0.35em] ~\dotfill\\\\ h(t)=-16(t ~~ - ~~ \stackrel{h}{5})^2~~ + ~~\stackrel{k}{116}~\hfill \underset{maximum~height}{\stackrel{vertex}{(5~~,~~\underset{\uparrow }{116})}}](https://tex.z-dn.net/?f=~~~~~~%5Ctextit%7Bvertical%20parabola%20vertex%20form%7D%20%5C%5C%5C%5C%20y%3Da%28x-%20h%29%5E2%2B%20k%5Cqquad%20%5Cbegin%7Bcases%7D%20%5Cstackrel%7Bvertex%7D%7B%28h%2Ck%29%7D%5C%5C%5C%5C%20%5Cstackrel%7B%22a%22~is~negative%7D%7Bop%20ens~%5Ccap%7D%5Cqquad%20%5Cstackrel%7B%22a%22~is~positive%7D%7Bop%20ens~%5Ccup%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20h%28t%29%3D-16%28t%20~~%20-%20~~%20%5Cstackrel%7Bh%7D%7B5%7D%29%5E2~~%20%2B%20~~%5Cstackrel%7Bk%7D%7B116%7D~%5Chfill%20%5Cunderset%7Bmaximum~height%7D%7B%5Cstackrel%7Bvertex%7D%7B%285~~%2C~~%5Cunderset%7B%5Cuparrow%20%7D%7B116%7D%29%7D%7D)