Answer:
bet
Step-by-step explanation:
Answer:
The correct option is option (c).

Step-by-step explanation:
Right angled triangle:
- One angle must be 90° and other two angles are acute angle.
- The hypotenuses is the longest side of the triangle and opposite right angle.
- It follows the Pythagorean Theorem.
Given that,
∠QRP= 90°, ∠RPQ= 30°, ∠PQR = 60°
we know that,

for sin P , the opposite is QR.
The hypotenuse is PQ.
Therefore,

The answer is 14.33333 but you will have to round which you will just have 14.3
so hmmm let's get the area of the whole hexagon, and then get the area of the circle inside it, then <u>subtract the area of the circle from that of the hexagon's</u>, what's leftover is what we didn't subtract, namely the shaded part.
![\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\cot\stackrel{\stackrel{degrees}{\downarrow }}{\left( \frac{180}{n} \right)}~ \begin{cases} n=\textit{number of sides}\\ s=\textit{length of a side}\\[-0.5em] \hrulefill\\ n=\stackrel{hexagon}{6}\\ s=\frac{9}{2} \end{cases}\implies A=\cfrac{1}{4}(6)\left( \cfrac{9}{2} \right)^2 \cot\left( \cfrac{180}{6} \right)](https://tex.z-dn.net/?f=%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B4%7Dns%5E2%5Ccot%5Cstackrel%7B%5Cstackrel%7Bdegrees%7D%7B%5Cdownarrow%20%7D%7D%7B%5Cleft%28%20%5Cfrac%7B180%7D%7Bn%7D%20%5Cright%29%7D~%20%5Cbegin%7Bcases%7D%20n%3D%5Ctextit%7Bnumber%20of%20sides%7D%5C%5C%20s%3D%5Ctextit%7Blength%20of%20a%20side%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20n%3D%5Cstackrel%7Bhexagon%7D%7B6%7D%5C%5C%20s%3D%5Cfrac%7B9%7D%7B2%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Cleft%28%20%5Ccfrac%7B9%7D%7B2%7D%20%5Cright%29%5E2%20%5Ccot%5Cleft%28%20%5Ccfrac%7B180%7D%7B6%7D%20%5Cright%29)
![A=\cfrac{1}{4}(6)\cfrac{9^2}{2^2} \cot(30^o)\implies A=\cfrac{243}{8}\cot(30^o)\implies A=\cfrac{243\sqrt{3}}{8} \\\\[-0.35em] ~\dotfill\\\\ \textit{area of circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=\frac{4}{5} \end{cases}\implies A=\pi \left( \cfrac{4}{5} \right)^2\implies A=\cfrac{16\pi }{25} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=A%3D%5Ccfrac%7B1%7D%7B4%7D%286%29%5Ccfrac%7B9%5E2%7D%7B2%5E2%7D%20%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%7D%7B8%7D%5Ccot%2830%5Eo%29%5Cimplies%20A%3D%5Ccfrac%7B243%5Csqrt%7B3%7D%7D%7B8%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ctextit%7Barea%20of%20circle%7D%5C%5C%5C%5C%20A%3D%5Cpi%20r%5E2~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D%5Cfrac%7B4%7D%7B5%7D%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Cpi%20%5Cleft%28%20%5Ccfrac%7B4%7D%7B5%7D%20%5Cright%29%5E2%5Cimplies%20A%3D%5Ccfrac%7B16%5Cpi%20%7D%7B25%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
