Answer:
404 cm³ Anyway... Look down here for my explanation.
Step-by-step explanation:
Let's Draw a line from the center of the circle to one of the ends of the chord (water surface) and another to the point at greatest depth on your paper. A right-angled triangle is formed too. The Length of side to the water-surface is 5 cm, the hospot is 7 cm. 
We Calculate the angle θ in the corner of the right-angled triangle by: cos θ = 5/7 ⇒ θ = cos ˉ¹ (5/7) 
44.4°, so the angle subtended at the center of the circle by the water surface is roughly 88.8° 
The area shaded will then be the area of the sector minus the area of the triangle above the water in your diagram. 
Shaded area 88.8/360*area of circle - ½*7*788.8° 
= 88.8/360*π*7² - 24.5*sin 88.8° 
13.5 cm² 
(using area of ∆ = ½.a.b.sin C for the triangle) 
Volume of water = cross-sectional area * length 
13.5 * 30 cm³ 
404 cm³
 
        
             
        
        
        
Answer:
y = 3x - 8
Step-by-step explanation:
m = slope
slope = y2 - y1 / x2 - x1
4 - 1 / 4 - 3 = 3/1 = 3
m = 3
b = y-intercept
b = -8
y = mx + b 
y = 3x + (-8)
y = 3x - 8
 
        
             
        
        
        
5(4)+5x=60 
x=8 
x= number of pies the club made
        
             
        
        
        
Answer:
The tax is split between employers and employees. They both pay 7.65% (6.2% for Social Security and 1.45% for Medicare) of their income to FICA, the combined contribution totaling 15.3%. The maximum taxable earnings for employees as of 2020 is $137,700.
<em>Correct </em><em>me </em><em>if</em><em> </em><em>you </em><em>want</em><em> </em><em>If </em><em>its </em><em>wrong</em>
 
        
             
        
        
        
Responda:
11
Explicação passo a passo:
Área do retângulo = comprimento * largura
Dado
Comprimento = 4
Largura = 3x + 2
Área = 44
Substitua na fórmula e obtenha x
44 = 4 (3x + 2)
44 = 12x + 8
12x = 44-8
12x = 36
x = 36/12
x = 3
Obtenha os lados mais longos
Lado mais longo = 3x + 2
Substitua x = 3
Lado mais comprido = 3 (3) + 2
Lado mais comprido = 11
Portanto, a medida do lado mais longo deste retângulo é 11