Answer:
Step-by-step explanation:
<u>Let the number be x, and we have equation:</u>
- 16x + 2 = -7x - 21
- 16x + 7x = - 21 - 2
- 23x = - 23
- x = -1
The number is -1
The one day pay is $106.25 rounded to the nearest hundredth.
<u>Step-by-step explanation:</u>
<u>From the table shown :</u>
- The timing shown in the morning is from 8:00 to 12:15
- The number of hours worked in the morning = 4 hours 15 minutes.
It is given that, the pay is $12.5 per hour.
Therefore, the pay earned in the morning = No.of hours × pay per hour.
⇒ 4 hours × 12.5 = $50
⇒ (15 mins / 60 mins) × 12.5 = $3.125
⇒ 50+3.125
⇒ 53.125
- The timing shown in the afternoon is from 8:00 to 12:15
- The number of hours worked in the morning = 4 hours 15 minutes.
Therefore, the pay earned in the afternoon = No.of hours × pay per hour.
⇒ 4 hours × 12.5 = $50
⇒ (15 mins / 60 mins) × 12.5 = $3.125
⇒ 50+3.125
⇒ 53.125
The pay for 1 day = pay earned in the morning section + pay earned in the afternoon section.
⇒ 53.125 + 53.125
⇒ 106.25
∴ The one day pay is $106.25 rounded to the nearest hundredth.
3
------------
4(5z+16)
I'm assuming you want to include all of the numbers
Answer:
Step-by-step explanation:
1. First, put together the information we have. Total = 121. Emily has 40% more than Carl, and Carl has 60% more than Antony.
2. Next, set each person as a variable. Antony = x. Carl = 1.6x. Emily = 1.4 times 1.6x.
3. Next, form an equation using these variables.
x + 1.6x + (1.4 x 1.6x) = 121
x + 1.6x + 2.24x = 121
4.84x = 121
x = 25
4. Finally, plug in x to our previous variables in step #2 to find the number of stamps Emily and Carl have.
<u>Antony</u>: x = 25 stamps
<u>Carl:</u> 1.6x = 40 stamps
<u>Emily</u>: 1.4 times 1.6x = 56 stamps
By the way, is this for RSM? If so, I am working on that problem right now and I searched up the solution but couldn't find it, so I stumbled upon this. I hope this helped!
Answer:

Step-by-step explanation:
1. Swap sides

Swap sides:

2. Isolate the y

Multiply to both sides by 18:

Group like terms:

Simplify the fraction:

Multiply the fractions:

Simplify the arithmetic:

---------------------------
Why learn this:
- Linear equations cannot tell you the future, but they can give you a good idea of what to expect so you can plan ahead. How long will it take you to fill your swimming pool? How much money will you earn during summer break? What are the quantities you need for your favorite recipe to make enough for all your friends?
- Linear equations explain some of the relationships between what we know and what we want to know and can help us solve a wide range of problems we might encounter in our everyday lives.
---------------------
Terms and topics
- Linear equations with one unknown
The main application of linear equations is solving problems in which an unknown variable, usually (but not always) x, is dependent on a known constant.
We solve linear equations by isolating the unknown variable on one side of the equation and simplifying the rest of the equation. When simplifying, anything that is done to one side of the equation must also be done to the other.
An equation of:

in which
and
are the constants and
is the unknown variable, is a typical linear equation with one unknown. To solve for
in this example, we would first isolate it by subtracting
from both sides of the equation. We would then divide both sides of the equation by
resulting in an answer of:
