A student compares the boiling point of substances having different intermolecular forces. <u>Boiling points of various substances</u> is the dependent variable that student most likely use.
<h3>Does the nature of intermolecular forces present in different substance affect their boiling points?</h3>
The boiling point of a substance is proportional to the strength of its intermolecular forces, the higher the boiling point, the stronger the intermolecular forces. We can compare the strengths of intermolecular forces by comparing the boiling points of different substances.
<h3>What properties are affected by intermolecular forces?</h3>
Intermolecular forces are measured by boiling points.
Intermolecular forces increase as bond polarization increases.
Ionic > hydrogen bonding > dipole dipole > dispersion is the order of the strength of intermolecular forces (and thus their impact on boiling points).
<h3>How can you determine strong and weak intermolecular forces?</h3>
Substances with strong intermolecular forces are very attracted to one another and are held together tightly. These substances require a great deal of energy to separate, whereas substances with weak intermolecular forces are held together very loosely and have weak interactions.
Learn more about intermolecular forces:
<u><em>brainly.com/question/13479228</em></u>
#SPJ4
Answer:
The bond angles between the axial bonding groups are slightly less than 180°.
The bond angles between the equatorial bonding groups are slightly less than 120°.
Explanation:
Accordign to VSEPR theory, a molecule with four bonding groups and one lone pair on the central atom has a trigonal bipyramidal electronic geometry.
The position of the lone pair can be located in the equatorial position or axial position.
When the lone pair is found in equatorial position, it has two axial groups that repel it and the angle of the lone pair between each axial group is 90°.
When the lone pair is in axial position it has 3 equatorial groups that repel it and the angle of the lone pair between each equatorial group is 90°.
Since the molecule has a lone pair, the most stable geometric structure is when the lone pair is in the equatorial position, because it has fewer repulsions than in the axial position.
The molecular geometry is "seesaw"
The bond angles between the axial bonding groups are slightly less than 180°.
The bond angles between the equatorial bonding groups are slightly less than 120°.
Answer:
HF - hydrogen bonding
CBr4 - Dispersion
NF3 - Dipole-dipole
Explanation:
Hydrogen bonding occurs when hydrogen is covalently bonded to a highly electronegative atom such as fluorine, chlorine nitrogen, oxygen etc. Hence the dominant intermolecular force in HF is hydrogen bonding.
CBr4 is nonpolar because the molecule is tetrahedral and the individual C-Br dipole moments cancel out leaving the molecule with a zero dipole moment hence the dominant intermolecular force are the dispersion forces.
NF3 has a resultant dipole moment hence the molecules are held together by dipole-dipole interaction.
I think it’s aluminum cyanide but I could be wrong
The ice sculpture would take longer to melt than the ice cube