Answer:
Both Law of Sines and Cosines can be used to determine the angle Q.
Step-by-step explanation:.
Since from Law of Sines with one angle and three sides we can find other angles using the ratio obtained with the given angle and side length opposite side if angle P is not given we couldn't use this.
Law of Cosines can be used to find any angle of triangle with all three side lengths given and angle P is also not required to find angle Q.
The answer is D. I am sure of this. Brainpower? Have a great day!
Recall that to get the x-intercepts, we set the f(x) = y = 0, thus
![\bf \stackrel{f(x)}{0}=-4cos\left(x-\frac{\pi }{2} \right)\implies 0=cos\left(x-\frac{\pi }{2} \right) \\\\\\ cos^{-1}(0)=cos^{-1}\left[ cos\left(x-\frac{\pi }{2} \right) \right]\implies cos^{-1}(0)=x-\cfrac{\pi }{2} \\\\\\ x-\cfrac{\pi }{2}= \begin{cases} \frac{\pi }{2}\\\\ \frac{3\pi }{2} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bf%28x%29%7D%7B0%7D%3D-4cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%5Cimplies%200%3Dcos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%0A%5C%5C%5C%5C%5C%5C%0Acos%5E%7B-1%7D%280%29%3Dcos%5E%7B-1%7D%5Cleft%5B%20cos%5Cleft%28x-%5Cfrac%7B%5Cpi%20%7D%7B2%7D%20%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%5E%7B-1%7D%280%29%3Dx-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%0A%5C%5C%5C%5C%5C%5C%0Ax-%5Ccfrac%7B%5Cpi%20%7D%7B2%7D%3D%0A%5Cbegin%7Bcases%7D%0A%5Cfrac%7B%5Cpi%20%7D%7B2%7D%5C%5C%5C%5C%0A%5Cfrac%7B3%5Cpi%20%7D%7B2%7D%0A%5Cend%7Bcases%7D)
32 because 32 x 100 = 3,200
Let
x---------------> distance from people living to the city center
we Know that
Zone 1 covers people living within three miles of the city center
Zone 1 ------------> [x < 3 miles]
Zone 2 covers those between three and seven miles from the center
Zone 2 ------------> [ 3 <= x < = 7 miles]
Zone 3 covers those over seven miles from the center
Zone 3 ------------> [ x > 7 miles]
<span>calculate the distance between two points to find the value of x
</span>
case A) point (0,0) point (3,4)
x=√[(y2-y1)² +(x2-x1)²]----------> √[(4-0)² +(3-0)²]------> √[16+9]
x=√25-------------> x=5 miles
the answer Part A)
people living in (3,4)
x=5 miles -------------> covers Zone 2 [ 3 < =x <= 7 miles]
case B) point (0,0) point (6,5)
x=√[(y2-y1)² +(x2-x1)²]----------> √[(5-0)² +(6-0)²]------> √[25+36]
x=√61-------------> x=7.81 miles
the answer Part B)
people living in (6,5)
x=7.81 miles -------------> covers Zone 3 [ x > 7 miles]
case C) point (0,0) point (1,2)
x=√[(y2-y1)² +(x2-x1)²]----------> √[(2-0)² +(1-0)²]------> √[4+1]
x=√5-------------> x=2.23 miles
the answer Part C)
people living in (1,2)
x=2.23 miles -------------> covers Zone 1 [ x < 3 miles]
case D) point (0,0) point (0,3)
x=√[(y2-y1)² +(x2-x1)²]----------> √[(3-0)² +(0-0)²]------> √[9]
x=√9-------------> x=3 miles
the answer Part D)
people living in (0,3)
x=3 miles -------------> covers Zone 2 [ 3 < =x <= 7 miles]
case E) point (0,0) point (1,6)
x=√[(y2-y1)² +(x2-x1)²]----------> √[(6-0)² +(1-0)²]------> √[36+1]
x=√37-------------> x=6.08 miles
the answer Part E)
people living in (1,6)
x=6.08 miles -------------> covers Zone 2 [ 3 < = x <= 7 miles]