Prove that tan60+tan70-tan50+tan10=2sqrt3?
1 answer:
{tan(60) + tan(10)}/{1 - tan(60)*tan(10)} - {tan(60) - tan(10)}/{1 + tan(10)*tan(60)} <span>ii) Taking LCM & simplifying with applying tan(60) = √3, the above simplifies to: </span> <span>= 8*tan(10)/{1 - 3*tan²(10)} </span> <span>iii) So tan(70) - tan(50) + tan(10) = 8*tan(10)/{1 - 3*tan²(10)} + tan(10) </span> <span>= [8*tan(10) + tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)} </span> <span>= [9*tan(10) - 3*tan³(10)]/{1 - 3*tan²(10)} </span> <span>= 3 [3*tan(10) - tan³(10)]/{1 - 3*tan²(10)} </span> <span>= 3*tan(30) = 3*(1/√3) = √3 [Proved] </span> <span>[Since tan(3A) = {3*tan(A) - tan³(A)}/{1 - 3*tan²(A)}, </span> <span>{3*tan(10) - tan³(10)}/{1 - 3*tan²(10)} = tan(3*10) = tan(30)]</span>
You might be interested in
I think the volume of the cone is 65.94yd because the radius is 3 and the height is 7 also 3 to the second power equals 9 then 3.14 multiplied by 9 equals 28.26 and finally 28.26 multiplied by 7/3 equals 65.94 V=3.14 x r^2 h/3 V=3.14 x 3^2 7/3
Answer:
125 meters squared
Step-by-step explanation:
Surface area of initial pyramid:
A= 10²+4*1/2*10*15= 400 m² Surface area of extended pyramid:
A= 10*15+2*1/2*15*15+2*1/2*10*15= 525 m² The difference is:
Answer:
frdg
Step-by-step explanation:
Area of triangle = 1/2 (6)(5) = 15 Area of semicircle = 1/2(3.14)(3^2) = 14.13 Area of figure = 15 + 14.13 = 29.13 Answer 29.13 square units
3/4=24 so 1/4=8 therefore 4/4=32