Step 1: Start with the following:
(a + b + c)(d + e)
Step 2: Distribute (d + e) to each of the term in the first parenthesis
a(d + e) + b(d + e) + c(d + e)
Step 3: Distribute d and e to each term:
(ad + ae) + (bd + be) + (cd + ce)
or ad + ae + bd + be + cd + ce without the parentheses.
Step 4: Finally, simplify.
Answer:
x=4
Step-by-step explanation:
Answer:
8ax + (4a²- 6a)
Step-by-step explanation:
g(x)=4x²−6x
g(x+a)
= 4(x+a)² - 6(x+a)
= 4( x² + 2ax + a²) - 6x - 6a
= 4x² + (4)2ax + (4)a² - 6x - 6a
= 4x² + 8ax + 4a² - 6x - 6a
= 4x² + 8ax - 6x + 4a²- 6a
= 4x² + (8a - 6)x + (4a²- 6a)
g(x+a) - g(x)
= [4x² + (8a - 6)x + (4a²- 6a)] - (4x²−6x)
= 4x² + (8a - 6)x + (4a²- 6a) - 4x² + 6x
= (8a - 6)x + (4a²- 6a) + 6x
= (8a - 6 + 6)x + (4a²- 6a)
= 8ax + (4a²- 6a)
Answer:
25
Step-by-step explanation:
27 ÷ 3 + 8(2 power) ÷ 4
27 ÷ 3 + 64 ÷ 4
9 + 64÷4
9 + 16
= 25