Answer:
(8,2)
Step-by-step explanation:
The solution is where the two graphs intersect.
The two graphs intersect at x=8 and y=2
(8,2)
Answer:
D : Katy was 300 meters from the bridge, and it took her 6 minutes to reach the bridge.
Step-by-step explanation:
Recall that x represents the time walked
When you see the first entry on the table as: x=0, that means Katy is about to start her walk, and the value to the right which represents her distance from the bridge is 300 meters. So as her walk started she was 300 meters from the bridge.
Now look at the last entry pair at the bottom of the table: the value in the "x" column (that represents the number of minutes she walked) reads: 6, and the value to the right (next column) reads 0 (0 meters from the bridge)
This is telling us that Katy was at the bridge after 6 minutes of walk. So answer D is the correct answer representing the given table of time and distance values.
Answer:
$10.27
Step-by-step explanation:
H + F = $8, (7% of 8 is 0.56) [$8.56] + 20% = 10.272 --> $10.27
Answer:
Therefore the value of y(1)= 0.9152.
Step-by-step explanation:
According to the Euler's method
y(x+h)≈ y(x) + hy'(x) ....(1)
Given that y(0) =3 and step size (h) = 0.2.

Putting the value of y'(x) in equation (1)

Substituting x =0 and h= 0.2
![y(0+0.2)\approx y(0)+0.2[0\times y(0)-\frac12 (y(0))^2]](https://tex.z-dn.net/?f=y%280%2B0.2%29%5Capprox%20y%280%29%2B0.2%5B0%5Ctimes%20y%280%29-%5Cfrac12%20%28y%280%29%29%5E2%5D)
[∵ y(0) =3 ]

Substituting x =0.2 and h= 0.2
![y(0.2+0.2)\approx y(0.2)+0.2[(0.2)^2\times y(0.2)-\frac12 (y(0.2))^2]](https://tex.z-dn.net/?f=y%280.2%2B0.2%29%5Capprox%20y%280.2%29%2B0.2%5B%280.2%29%5E2%5Ctimes%20y%280.2%29-%5Cfrac12%20%28y%280.2%29%29%5E2%5D)
![\Rightarrow y(0.4)\approx 2.7+0.2[(0.2)^2\times 2.7- \frac12(2.7)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.4%29%5Capprox%20%202.7%2B0.2%5B%280.2%29%5E2%5Ctimes%202.7-%20%5Cfrac12%282.7%29%5E2%5D)

Substituting x =0.4 and h= 0.2
![y(0.4+0.2)\approx y(0.4)+0.2[(0.4)^2\times y(0.4)-\frac12 (y(0.4))^2]](https://tex.z-dn.net/?f=y%280.4%2B0.2%29%5Capprox%20y%280.4%29%2B0.2%5B%280.4%29%5E2%5Ctimes%20y%280.4%29-%5Cfrac12%20%28y%280.4%29%29%5E2%5D)
![\Rightarrow y(0.6)\approx 1.9926+0.2[(0.4)^2\times 1.9926- \frac12(1.9926)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.6%29%5Capprox%20%201.9926%2B0.2%5B%280.4%29%5E2%5Ctimes%201.9926-%20%5Cfrac12%281.9926%29%5E2%5D)

Substituting x =0.6 and h= 0.2
![y(0.6+0.2)\approx y(0.6)+0.2[(0.6)^2\times y(0.6)-\frac12 (y(0.6))^2]](https://tex.z-dn.net/?f=y%280.6%2B0.2%29%5Capprox%20y%280.6%29%2B0.2%5B%280.6%29%5E2%5Ctimes%20y%280.6%29-%5Cfrac12%20%28y%280.6%29%29%5E2%5D)
![\Rightarrow y(0.8)\approx 1.6593+0.2[(0.6)^2\times 1.6593- \frac12(1.6593)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%280.8%29%5Capprox%20%201.6593%2B0.2%5B%280.6%29%5E2%5Ctimes%201.6593-%20%5Cfrac12%281.6593%29%5E2%5D)

Substituting x =0.8 and h= 0.2
![y(0.8+0.2)\approx y(0.8)+0.2[(0.8)^2\times y(0.8)-\frac12 (y(0.8))^2]](https://tex.z-dn.net/?f=y%280.8%2B0.2%29%5Capprox%20y%280.8%29%2B0.2%5B%280.8%29%5E2%5Ctimes%20y%280.8%29-%5Cfrac12%20%28y%280.8%29%29%5E2%5D)
![\Rightarrow y(1.0)\approx 0.8800+0.2[(0.8)^2\times 0.8800- \frac12(0.8800)^2]](https://tex.z-dn.net/?f=%5CRightarrow%20y%281.0%29%5Capprox%20%200.8800%2B0.2%5B%280.8%29%5E2%5Ctimes%200.8800-%20%5Cfrac12%280.8800%29%5E2%5D)

Therefore the value of y(1)= 0.9152.
Answer:
A. 2 (0)=0
B. 2 (2)=4
Step-by-step explanation:
You have to multiply the X numbers by 2 for example 2x , x=2 , 2x2=4