Answer:
The time interval when
is at 
The distance is 106.109 m
Step-by-step explanation:
The velocity of the second particle Q moving along the x-axis is :

So ; the objective here is to find the time interval and the distance traveled by particle Q during the time interval.
We are also to that :
between 
The schematic free body graphical representation of the above illustration was attached in the file below and the point when
is at 4 is obtained in the parabolic curve.
So,
is at 
Taking the integral of the time interval in order to determine the distance; we have:
distance = 
= 
= By using the Scientific calculator notation;
distance = 106.109 m
Well if you take 468 and divide it by 18 you get 26 that 26mpg take 754 divide it by 26 and you get 29 and that's how many gallons he used
Answer:
First off, we look for which circles are open or closed.
We start with an open interval since the circle on the left is open and end with a closed interval since the circle on the right is closed.
Domain is all x values, Range is all y values
The graph shows the continous function going from -3 to 1 on the x axis.
According to the circles, this means our domain will be (-3,1].
Now, the range doesn't care about if its closed or not. So we can say the graph is on the y axis from -4 and 0. This means the range is -4<y<0
I used different notations for both just incase you need to represent your answer differently :)
-3<x<1 & (-3,1] . Range is [-4,0]. 0>y>-4 looks correct as-well.
Answer:A
Step-by-step explanation: the diagonals face each other making them perpendicular making both sides parallel to each other, being straight.