Answer:
(2, 7 )
Step-by-step explanation:
Given the 2 equations
y = 2x + 3 → (1)
y = 3x + 1 → (2)
Substitute y = 3x + 1 into (1)
3x + 1 = 2x + 3 ( subtract 2x from both sides )
x + 1 = 3 ( subtract 1 from both sides )
x = 2
Substitute x = 2 into either of the 2 equations for corresponding value of y
Substituting x = 2 into (1)
y = 2(2) + 3 = 4 + 3 = 7
Solution is (2, 7 )
Answer:
y²+5y+4=y²+4y+y+4=y(y+4)+1(y+4)=
<u>(y+4)(y+1)</u>
Separate the vectors into their <em>x</em>- and <em>y</em>-components. Let <em>u</em> be the vector on the right and <em>v</em> the vector on the left, so that
<em>u</em> = 4 cos(45°) <em>x</em> + 4 sin(45°) <em>y</em>
<em>v</em> = 2 cos(135°) <em>x</em> + 2 sin(135°) <em>y</em>
where <em>x</em> and <em>y</em> denote the unit vectors in the <em>x</em> and <em>y</em> directions.
Then the sum is
<em>u</em> + <em>v</em> = (4 cos(45°) + 2 cos(135°)) <em>x</em> + (4 sin(45°) + 2 sin(135°)) <em>y</em>
and its magnitude is
||<em>u</em> + <em>v</em>|| = √((4 cos(45°) + 2 cos(135°))² + (4 sin(45°) + 2 sin(135°))²)
… = √(16 cos²(45°) + 16 cos(45°) cos(135°) + 4 cos²(135°) + 16 sin²(45°) + 16 sin(45°) sin(135°) + 4 sin²(135°))
… = √(16 (cos²(45°) + sin²(45°)) + 16 (cos(45°) cos(135°) + sin(45°) sin(135°)) + 4 (cos²(135°) + sin²(135°)))
… = √(16 + 16 cos(135° - 45°) + 4)
… = √(20 + 16 cos(90°))
… = √20 = 2√5
5/12 and 3/8 is the answer