Sin³ x-sin x=cos ² x
we know that:
sin²x + cos²x=1 ⇒cos²x=1-sin²x
Therefore:
sin³x-sin x=1-sin²x
sin³x+sin²x-sin x-1=0
sin³x=z
z³+z²-z-1=0
we divide by Ruffini method:
1 1 -1 -1
1 1 2 1 z=1
-------------------------------------
1 2 1 0
-1 -1 -1 z=-1
--------------------------------------
1 1 0 z=-1
Therefore; the solutions are z=-1 and z=1
The solutions are:
if z=-1, then
sin x=-1 ⇒x= arcsin -1=π+2kπ (180º+360ºK) K∈Z
if z=1, then
sin x=1 ⇒ x=arcsin 1=π/2 + 2kπ (90º+360ºK) k∈Z
π/2 + 2kπ U π+2Kπ=π/2+kπ k∈Z ≈(90º+180ºK)
Answer: π/2 + Kπ or 90º+180ºK K∈Z
Z=...-3,-2,-1,0,1,2,3,4....
I think it’s the fourth one!!
Step-by-step explanation:
Notice that
9y² - 4xy + 4x²/9 = (3y - 2x/3)².
Therefore (9y² - 4xy + 4x²/9) / (3y - 2x/3)
= (3y - 2x/3).
Answer:
Step-by-step explanation:
f(x) = (3x4 - 12)3 and h(x) = x3.
g(x) = 3x4 - 12
since f(x) = (hºg)(x) = h(g(x))
Answer:
d/2+9=(-15)
Step-by-step explanation:
-48
if you want me to explain, let me know in the comments !