Answer:
The data we have is:
The acceleration is 3.2 m/s^2 for 14 seconds
Initial velocity = 5.1 m/s
initial position = 0m
Then:
A(t) = 3.2m/s^2
To have the velocity, we integrate over time, and the constant of integration will be equal to the initial velocity.
V(t) = (3.2m/s^2)*t + 5.1 m/s
To have the position equation, we integrate again over time, and now the constant of integration will be the initial position (that is zero)
P(t) = (1/2)*(3.2 m/s^2)*t^2 + 5.1m/s*t
Now, the final position refers to the position when the car stops accelerating, this is at t = 14s.
P(14s) = (1/2)*(3.2 m/s^2)*(14s)^2 + 5.1m/s*14s = 385m
So the final position is 385 meters ahead the initial position.
Answer:
The answer is A
Step-by-step explanation:
Using PEMDAS you answer parentheses first so
(8-5)2-(2+4) would then be
3*2-6 then you would multiply
6-6 and find the answer of
0
The answer is 450ml so hope this helps all of you who had this problem
Answer:
2(-2)-5(-2)+12
-4-(-10)+12
6+12
18
Step-by-step explanation: