Answer:
The doubling time of this investment would be 9.9 years.
Step-by-step explanation:
The appropriate equation for this compound interest is
A = Pe^(rt), where P is the principal, r is the interest rate as a decimal fraction, and t is the elapsed time in years.
If P doubles, then A = 2P
Thus, 2P = Pe^(0.07t)
Dividing both sides by P results in 2 = e^(0.07t)
Take the natural log of both sides: ln 2 = 0.07t.
Then t = elapsed time = ln 2
--------- = 0.69315/0.07 = 9.9
0.07
The doubling time of this investment would be 9.9 years.
Since the basis is from year 1 to year 2, calculate first for the difference of their percentages. That would be:
Difference = year 2 - year 1
Difference = 2.32% - 1.1% = 1.22%
We apply this same value of percentage increase from year 2 to year. Thus, the percentage for year 3 is:
% Year 3 = % Year 2 + percentage increase
% Year 3 = 2.32% + 1.22%
% Year 3 = 3.54%
The unit rate is 15 meters per second.
60 / 4 = 15
I hope this helps :)