Using the triangle of pascal we have that the expression equivalent to (x + y) ^ 6 is given by:
x ^ 6 + 6x ^ 5y + 15x ^ 4y ^ 2 + 20x ^ 3y ^ 3 + 15x ^ 2y ^ 4 + 6xy ^ 5 + y ^ 6
Therefore, the coefficients of the expansion are given by:
1, 6, 15, 20, 15, 6, 1
Answer:
The coefficients corresponding to k = 0, 1, 2, ..., 6 in the expansion of (x + y) ^ 6 are 1, 6, 15, 20, 15, 6, 1
The answer to your question would be C 6 can be put into 18 and 24
<h2>Evaluating Composite Functions</h2><h3>
Answer:</h3>

<h3>
Step-by-step explanation:</h3>
We can write how
will be defined but that's too much work and it's only useful when we are evaluating
with many inputs.
First let's solve for
first. As you read through this answer, you'll get the idea of what I'm doing.
Given:

Solving for
:

Now we can solve for
, since
,
.
Given:

Solving for
:

Now we are can solve for
. By now you should get the idea why
.
Given:

Solving for
:

Answer:
48 is the answer
Step-by-step explanation: