Answer:
See answer and graph below
Step-by-step explanation:
∬Ry2x2+y2dA
=∫Ry.2x.2+y.2dA
=A(2y+4Ryx)+c
=∫Ry.2x.2+y.2dA
Integral of a constant ∫pdx=px
=(2x+2.2Ryx)A
=A(2y+4Ryx)
=A(2y+4Ryx)+c
The graph of y=A(2y+4Ryx)+c assuming A=1 and c=2
Answer:
- The arcs on the Golden Gate Bridge.
Explanation:
I think about the Golden Gate Bridge, which is a suspension bridge.
As in any suspension bridge, a long cable is supported by two large supports.
The cable falls from a support, in the form of a curve concave upwards, to a minimum point that is the vertex of the<em> parabola</em>, through which the axis of <em>symmetry</em> passes, and curves again upwards to ascend to the upper end of the other support.
As a <em>unique feature</em> of this parabolic arc you can tell that the the concavity is upward; the parabola open upward.
Also, you can tell that the parabola is vertical, which means that the axis of symmetry is vertical.
The <em>symmetry</em> is clear because to the curve to the left of the vertex is a mirror image of the curve to the right of the vertex.
Answer:1,81 and 121.;)
Step-by-step explanation:
Answer:
first box is parallel
Second box perpendicular
Third box neither
Fourth box neither
Fifth box perpendicular
Sixth box is parallel
Why? Slopes of parallel lines are the same. Slopes of perpendicular lines are opposite reciprocals. (Example slope=1/2 a perpendicular line would be -2/1). Neither is just a when it’s not either parallel or perpendicular.
Hope this helps