Answer:
Statement: Triangle ACD is congruent to Triangle BCD
Reason: SSA (Side, Side, Angle)
First multiply the power, 3 x -2 = -6
Thus, 5^-6
Make the power positive
1/5^6
1/15625
Answer:
Distance= 6.6 miles
Bearing= N 62.854°W
Step-by-step explanation:
Let's determine angle b first
Angle b=20° (alternate angles)
Using cosine rule
Let the distance between the liner and the port be x
X² =8.8²+2.4²-2(8.8)(2.4)cos20
X²= 77.44 + 5.76-(39.69)
X²= 43.51
X= √43.51
X= 6.596
X= 6.6 miles
Let's determine the angles within the triangle using sine rule
2.4/sin b = 6.6/sin20
(2.4*sin20)/6.6= sin b
0.1244 = sin b
7.146= b°
Angle c= 180-20-7.146
Angle c= 152.854°
For the bearing
110+7.146= 117.146
180-117.146= 62.854°
Bearing= N 62.854°W
Answer:
Number of calls expected in next week by manager = 7940
Average Number of calls that call center agent will attend in an hour =7 calls
It is also given that, Call center remain open for 10 hours 5 days a week.
Also, it is given that, full time agents work 40 hours a week but are only on call for 35 hours per week ,Part time agents work 20 hours a week but are only on calls 17 hours per week .
⇒Number of hours worked by full time agents × Number of calls attended in an hour × Number of full time agents + Number of hours worked by Part time agents × Number of calls attended in an hour × Number of Part time agents ≤ 7940
⇒35 × 7×Number of full time agents +17 × 7 ×Number of Part time agents ≤ 7940
Option A
⇒35×15×7+17×7×15
= 3675+1785
= 5460
Option B
⇒35 ×7×20+17×7×7
=4900 +833
= 5733
Option C
⇒35×20×7 +17×20×7
=4900+2380
=7280
Option D
⇒25 × 35×7+17×7×5
=6125 +595
=6720
Option E
⇒28×35×7+17×7×10
=6860+1190
=8050
Option E, ⇒ 28 full time agents and 10 part time agents , is best to meet the scheduling needs is most appropriate, that is nearer to 7940 calls.
Answer:
yes
Step-by-step explanation: