P(t) = P₀ e^(kt)
<span>Where P₀ is the initial population, </span>
<span>P(t) is the population after "t" time. </span>
<span>t is your rate (can be hours, days, years, etc. in this case, hours) </span>
<span>k is the growth constant for this particular problem. </span>
<span>So using the information given, solve for k: </span>
<span>P₀ = 2000 </span>
<span>P(4) = 2600 </span>
<span>P(t) = P₀ e^(kt) </span>
<span>2600 = 2000e^(k * 4) </span>
<span>1.3 = e^(4k) </span>
<span>Natural log of both sides: </span>
<span>ln(1.3) = 4k </span>
<span>k = ln(1.3) / 4 </span>
<span>Now that we have a value for "k", use that, the same P₀, then solve for P(17): </span>
<span>P(t) = P₀ e^(kt) </span>
<span>P(17) = 2000 e^(17ln(1.3) / 4) </span>
<span>Using a calculator to get ln(1.3) then to simplify from there, we get: </span>
<span>P(17) ≈ 2000 e^(17 * 0.262364 / 4) </span>
<span>P(17) ≈ 2000 e^(4.460188 / 4) </span>
<span>P(17) ≈ 2000 e^(1.115047) </span>
<span>P(17) ≈ 2000 * 3.0497 </span>
<span>P(17) ≈ 6099.4 </span>
<span>Rounded to the nearest unit: </span>
<span>P(17) ≈ 6099 bacteria hope i could help =)))</span>
Answer:
hight is 12
Step-by-step explanation:
Pythagoras theorem 3:4:5which is3×3=9and 3×4=12and 3×5=15
<u>The concept:</u>
We are given the equation:

Which can be simplified as:

Since any number to the power '0' is 1
x² - x must be equal to 0 for the given equation to be true
<u></u>
<u>Solving for x:</u>
x² - x = 0
x(x-1) = 0
now, we can divide both sides by either x OR x-1
So we will see what we get for either choice:
x = 0/(x-1) x-1 = 0/x
x = 0 x = 1
Hence, the value of x is either 0 or 1
Answer:
6.24999999998 or 6.3
Step-by-step explanation: