1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
15

Choose three intervals on the real number line that contain both rational and irrational numbers. Do you think that any given in

te number line contains both rational and irrational numbers? Explain.
Mathematics
1 answer:
Helen [10]3 years ago
3 0

Any real number line ranges from negative infinity to positive infinity. A real number number line consists of all the rational and irrational numbers. Let us take three intervals which contain both the rational and irrational numbers.

First interval:  [3,4]

Since every integer is a rational number, 3 and 4 are both rational. In this interval there occurs the value of π (3.14159..) which is an irrational number.

Second interval :  [0,2]

0 and 2 are integers and hence are rational. In this interval, occurs √2 (1.41421...) is an irrational number.

Third interval : [2,3]

In this interval, Eulers number 'e' lie whose value is (2.718281.. )

Hence we can conclude that, there occurs an irrational number between any two rational number.

You might be interested in
An engineer has designed a valve that will regulate water pressure on an automobile engine. The valve was tested on 160 engines
abruzzese [7]

Answer:

Test statistic   Z = 2.1097

Step-by-step explanation:

<u><em>Step(i):-</em></u>

Given that size of the sample 'n' = 160

Given that mean of the Population(μ)  = 5.3pounds/square inch

The Standard deviation of the population(σ) = 0.6

Mean of the sample(x⁻) = 5.4

Level of significance =0.1

<u><em>Step(ii):-</em></u>

Test statistic

    Z = \frac{x^{-}-mean }{\frac{S.D}{\sqrt{n} } }

   Z = \frac{5.4-5.3}{\frac{0.6}{\sqrt{160} } }

  Z = 2.1097

<u><em>Final answer</em></u>:-

Test statistic   Z = 2.1097

5 0
3 years ago
Supongamos que estás en el infierno y el diablo te reta a un juego. Él piensa en un número natural.Cada día, tú tendrás una opor
Blababa [14]

Answer:

En síntesis, se inicia con el número natural más pequeño en el primer y se prosigue con los números siguientes en caso de no dar con n, de modo que el participante pasará en el infierno únicamente n días, algo pequeño en comparación con la eternidad.

Step-by-step explanation:

Los números naturales comprenden el subconjunto más pequeño de los números reales conformado por los siguientes elementos:

\mathbb{N} = \{1,2,3,4,...\}

Sea n \in \mathbb{N} el número que tiene el diablo en su mente, tal que n \geq 1. Comenzamos el primer día con 1, si este no corresponde con n. Entonces se utiliza 2 al día siguiente y este no corresponde, se emplea al día siguiente y así sucesivamente hasta conseguir n.

En síntesis, se inicia con el número natural más pequeño en el primer y se prosigue con los números siguientes en caso de no dar con n, de modo que el participante pasará en el infierno únicamente n días, algo pequeño en comparación con la eternidad.

6 0
3 years ago
What do u mean by Transversal ?​
Fed [463]

Answer:

A line that intersects a system of lines.

5 0
3 years ago
Read 2 more answers
What is the interest rate if a principal of $700 earns $196.00 in interest in seven years?
solniwko [45]

Answer:

4%

Step-by-step explanation:

To solve this problem we can use a modified version of the simple interest formula which is shown below:

r=\frac{I}{Pt}

<em>P = initial balance</em>

<em>I = interest</em>

<em>t = time</em>

<em />

Plug the values into the equation:

r=\frac{196}{(700)(7)}

r=.04

The last step is to convert 0.04 into a percent:

0.04(100) = 4

The interest rate is 4%.

6 0
3 years ago
<img src="https://tex.z-dn.net/?f=%20%5Cfrac%7B1%7D%7B%20%5Csec%281%20-%20%20%5Csin%28x%29%20%29%20%7D%20dx" id="TexFormula1" ti
Gnoma [55]

\displaystyle\dfrac{1}{\sec x(1-\sin x)}=\dfrac{\cos x}{1-\sin x}\\\\\\\int \dfrac{dx}{\sec x(1-\sin x)}=\int\dfrac{\cos x\, dx}{1-\sin x}\\\\\\u=1-\sin x\\du=-\cos x\, dx\\\\\int \dfrac{\cos x\, dx}{1-\sin x}=\int \dfrac{-du }{u}=-\int \dfrac{du}{u}=-\ln |u|+C=-\ln|1-\sin x|+C

4 0
2 years ago
Other questions:
  • 14. What is the solution of the system? Use elimination.<br> 9x + y = 30<br> 6x - y = 15
    7·1 answer
  • What is the simplified form of ?
    7·1 answer
  • Solve |x| + 7 &lt; 4. need answer asap
    8·1 answer
  • Write a function g whose graph represents a vertical stretch by a factor of 5 of the graph of f(x) = x +2.
    9·1 answer
  • Can someone help me with this hint it’s not c but someone plz help me I don’t get it
    13·1 answer
  • Plz help<br><br> Simplify 6(x + 4)
    7·2 answers
  • ANOTHER QUESTION PLEASE HELP
    13·2 answers
  • This is a rectangular pyramid. What shape is the base?
    13·2 answers
  • Which number represents 778, 332 rounded to the nearest thousand​
    8·1 answer
  • Some paint is made by mixing 2 cans of white paint for every 5 cans of red
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!