Solving a polynomial inequation
Solving the following inequation:
(x - 8) (x + 1) > 0
We are going to find the sign both parts of the multiplication,
(x - 8) and (x + 1), have when
x < - 8
-8 < x < 1
1 < x
Then we know (x - 8) (x + 1) > 0 whenever (x - 8) (x + 1) is positive
We can see in the figure (x - 8) (x + 1) is positive when x < -8 and x > 1
Then
Answer:B
This question is incomplete, the complete question is;
For what value of a is the volume of the tetrahedron formed by the coordinate planes and the plane (x/a) + (y/10) + (z/6) = 1 equal to 10?
Answer: the value of a is 1
Step-by-step explanation:
Given that;
Volume of tetrahedron bounded by plane (x/a) + (y/10) + (z/6) = 1
and coordinate plane is; V = 1/6|abc|
(x/a) + (y/10) + (z/6) = 1
volume = 10
so
10 = 1/6 | a × 10 × 6 |
60 = a × 10 × 6
60 = 60a
a = 60 / 60
a = 1
Therefore the value of a is 1
We need the format to answer the question. what does it look like?
Answer:
Assuming these expressions are listed separately, and it's asking for the specific type of polynomial:
1) binomial, because it is 2 terms
2) trinomial, because it has 3 terms
3) monomial, because it is 1 term
meanwhile, you can learn your greek and latin root words.
Bi means two, tri means 3, and mono means 1.
Step-by-step explanation:
Remember, terms are separated by +'s and -'s, and cannot be simplified further.