Answer:
x = -7/4
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtract Property of Equality
<u>Algebra I</u>
Step-by-step explanation:
<u>Step 1: Define</u>
5x + 3 - 2x = 12 + 7x - 2
<u>Step 2: Solve for </u><em><u>x</u></em>
- Combine like terms: 3x + 3 = 7x + 10
- [SPE] Subtract 3x on both sides: 3 = 4x + 10
- [SPE] Subtract 10 on both sides: -7 = 4x
- [DPE] Divide 4 on both sides: -7/4 = x
- Rewrite: x = -7/4
<u>Step 3: Check</u>
<em>Plug in x into the original equation to verify it's a solution.</em>
- Substitute in <em>x</em>: 5(-7/4) + 3 - 2(-7/4) = 12 + 7(-7/4) - 2
- Multiply: -35/4 + 3 + 7/2 = 12 - 49/4 - 2
- Add: -23/4 + 7/2 = 12 - 49/4 - 2
- Add: -9/4 = 12 - 49/4 - 2
- Subtract: -9/4 = -1/4 - 2
- Subtract: -9/4 = -9/4
Here we see that -9/4 does indeed equal -9/4.
∴ x = -7/4 is the solution to the equation.
Answer:
1191.4 ; 34.5
Step-by-step explanation:
Given the data:
29; 37; 38; 40; 58; 67; 68; 69; 76; 86; 87; 95; 96; 96; 99; 106; 112; 127; 145; 150
The sample variance and standard deviation can be obtained thus :
Σ(X - m)² / (n - 1)
Where, m = mean of the sample
n = sample size
The standard deviation equals, sqrt(variance )
Using a calculator:
The variance, σ² ;
Mean = Σx / n = 1681 / 20 = 84.05
(x -m)^2
[(29-84.05)^2 + (37-84.05)^2 + (38-84.05)^2 + (40-84.05)^2 + (58-84.05)^2 + (67-84.05)^2 + (68-84.05)^2 + (69-84.05)^2 + (76-84.05)^2 + (86-84.05)^2 + (87-84.05)^2 + (95-84.05)^2 + (96-84.05)^2 + (96-84.05)^2 + (99-84.05)^2 + (106-84.05)^2 + (112-84.05)^2 + (127-84.05)^2 + (145-84.05)^2 + (150-84.05)^2] / 19
22636.95 / 19
= 1191.4184 = 1191.42
Standard deviation = sqrt( Variance)
Standard deviation = sqrt(1191.4184)
Standard deviation = 34.516929 = 34.52
Answer:
13/12
Step-by-step explanation:
B - 7/4 = -2/3
B = -2/3 + 7/4
B = 13/12
Answer:

Step-by-step explanation:
Build a Polynomial Knowing its Roots
If we know a polynomial has roots x1, x2, ..., xn, then it can be expressed as:

Where a is the leading coefficient.
Note the roots appear with their signs changed in the polynomial.
If the polynomial has a leading coefficient of 1 and roots 2i and 3i with multiplicity 1, then:


The answer to this question would have to be the letter B