Answer:
0.14 M
Explanation:
To determinate the concentration of a new solution, we can use the equation below:
C1xV1 = C2xV2
Where C is the concentration, and V the volume, 1 represents the initial solution, and 2 the final one. So, first, the initial concentration is 1.50 M, the initial volume is 55.0 mL and the final volume is 278 mL
1.50x55.0 = C2x278
C2 = 0.30 M
The portion of 139 mL will be the same concentration because it wasn't diluted or evaporated. The final volume will be the volume of the initial solution plus the volume of water added, V2 = 139 + 155 = 294 mL
Then,
0.30x139 = C2x294
C2 = 0.14 M
Answer: Deposition
Explanation:
Answer:
T2 = 94.6 C
Explanation:
Use Clausius-Clayperyon equation.
ln P1/P2 = ∆Hvap/R (1/T2 - 1/T1) where R = 8.314 J/mol-K and T is in degrees K
P1 = 760 mmHg
P2 = 630 mmHg
T1 = 373 K
T2 = ?
∆Hvap = 40.7 kJ/mole
R = 0.008314 kJ/mole-K (NOTE: change R to units of kJ)
Plug in and solve for T2
ln 760 mmHg/630 mmHg = 40.7 kJ/mole (1/T2 - 1/373K)
T2 = 367.74 K = 94.6 C
The IUPAC says that elements have to be named after one of five things: a scientist, a place, a mineral or substance, a descriptor of the element, or a mythological reference. Of the new elements, three are named after places and one is named after a person No-one has yet named an element after themselves but many elements are named in tribute to important scientists
(you can cut some stuff out)
I believe the correct answer would be that it feels slippery. Being slippery or soapy is one characteristic of a base. This due to the fact that it dissolves the oils and fatty acids from the skin. Other characteristics would be that it turns litmus paper blue and has a bitter taste.