Imagine there are 4 sits for fill for the debate team
we can fill the first sit in 35 different ways, second sit we only have 34 choices , third sit 33 and last sit 32 ways to possible fill it.
35·34·33·32=1,256,640 possible ways the team could be form
Answer:
1 question : 0.89 I think.
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2
Answer:
<em> </em><em>a </em><em>+</em><em> </em><em>5</em><em>b</em><em> </em><em>+</em><em> </em><em>5</em><em>c</em>
Step-by-step explanation:
here's your solution
=> 3a + 4b + 5c +(-2a) + b
=> solve for like term
=> 3a - 2a + 4b + b + 5c
=> a + 5b + 5c
hope it helps
Use Pythagorean theorem
a^2 + b^2 = c^2
Plug in the info
b = 53, a = 41
41^2 + 53^2 = c^2
1681 + 2809 = c^2
c^2 = 4490
Squareroot of 4490 = 67.007
Perimeter = adding all sides
53m + 41m + 67.01m = 161.01 m
Solution: 161.01 meters