----------------------------------------
Formula:
----------------------------------------
Volume of a cylindrical pipe = πr²h
----------------------------------------
Find Radius:
----------------------------------------
Radius = Diameter ÷ 2
Radius = 4 ÷ 2
Radius = 2 in
----------------------------------------
Find Volume of the pipe:
----------------------------------------
Volume of a cylindrical pipe = π x 2² x 6
Volume of a cylindrical pipe = 24π
Volume of a cylindrical pipe = 75.40 in³ (nearest hundredth)
----------------------------------------
Answer: 75.40 in³
----------------------------------------
Ok so I will do only one and only put the answer for the others
ok so nearest xmm means that you havet o find teh smalles then largest so
1. legnth times width=area
so find max and min area
5 mm eror
legnth=645
width=400
so the legnth and witdth could be area
640 (subtract 5 for rerror) and 395 (subtract 5 for error
or
650 (add 5 for error) and 405 (add 5 for error)
so areas could be
640 times 395=252800
650 times 405=263250
upper bound=263250 mm^2
lower bound=252800 mm^2
so basically subtract the error to find minimum possible area and then add error to original measues to find max possible area
2. upper bound=29 m
lower bound=27 m
3. perimiter=2(L+W)
2((145-5)+(28-1))=lower bound=334 m
2((145+5)+(28+1))=upper bound=358 m
4. (35-1)(26-1)=lower bound=850 cm^2
(35+1)(26+1)=upper bound=972 cm^2
5. 2 sig figs (not sure about this question as much)
nonzeros are significant
30 is 1 sig fig since 0 is not significant
therfor
30.9 to 30.0
18=2 sig figs so that is alreight
upper bound of width=18
30.9 times 18=upper bound=556.2 cm^2
30.0 times 18=lower bound=540 cm^2
ANSWERS
1. upper bound=263250 mm^2
lower bound=252800 mm^2
2. upper bound=29 m
lower bound=27 m
3. lower bound=334 m
upper bound=358 m
4. lower bound=850 cm^2
upper bound=972 cm^2
5. upper and lower bound o 18=18
upper bound=556.2 cm^2
lower bound=540 cm^2
Answer:
13
Step-by-step explanation:
12^2+5^2=169
sqrt 169 =13
Answer:
-- Component A
-- Component B
Step-by-step explanation:
Given
Distribution = Exponential
--- Component A
--- Component B
Solving (a): The mean time of A
The mean of an exponential distribution is:

We have:
--- Component A

Solving (b): The mean time of B
The mean of an exponential distribution is:

We have:
--- Component B
