First simplify the equation and next multiply the 20 with the x^2 and find a number that adds together to give you the middle
Answer:
The weight of the water in the pool is approximately 60,000 lb·f
Step-by-step explanation:
The details of the swimming pool are;
The dimensions of the rectangular cross-section of the swimming pool = 10 feet × 20 feet
The depth of the pool = 5 feet
The density of the water in the pool = 60 pounds per cubic foot
From the question, we have;
The weight of the water in Pound force = W = The volume of water in the pool given in ft.³ × The density of water in the pool given in lb/ft.³ × Acceleration due to gravity, g
The volume of water in the pool = Cross-sectional area × Depth
∴ The volume of water in the pool = 10 ft. × 20 ft. × 5 ft. = 1,000 ft.³
Acceleration due to gravity, g ≈ 32.09 ft./s²
∴ W = 1,000 ft.³ × 60 lb/ft.³ × 32.09 ft./s² = 266,196.089 N
266,196.089 N ≈ 60,000 lb·f
The weight of the water in the pool ≈ 60,000 lb·f
Answer:
144 in²
Step-by-step explanation:
where's the graph? ( ಠ_ಠ)
Answer:
25
Step-by-step explanation:
Easy! You plug in 3 for n! H(3) = 3^3 - 2
3^3 = 27 - 2 = 25