83,000,023,007 is the answer.
Complete question is;
How many 10 - digit numbers are there, such that the sum of the digits is divisible by 2?
Answer:
There are 4500000000 ten digit numbers whose sum is divisible by 2.
Step-by-step explanation:
Since we are dealing with 10 digit numbers, the first 10 digit number whose sum is divisible by 2 is; 1000000001.
While the last 10 digit number whose sum is divisible by 2 is 9999999999.
Now,to find how many 10 digit numbers whose sum are divisible by 2, we will simply divide the difference of both numbers by 2 and then add 1 to the answer. This is because subtracting the minimum from the maximum gives us the number of 10 digit numbers we have. Then dividing by 2 gives the number of ten digit numbers with sum divisible by 2 in between. Then adding 1 to the result to cover the number not included gives;
((9999999999 - 1000000001)/2) + 1 = 4500000000
Answer:
Step-by-step explanation:
1 2 and 4 I Think
Solution :
Given :

1. Cumulative distribution function




![$=\frac{1}{450}\left[\frac{x^3}{3}-\frac{x^2}{2}\right]_6^x$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B450%7D%5Cleft%5B%5Cfrac%7Bx%5E3%7D%7B3%7D-%5Cfrac%7Bx%5E2%7D%7B2%7D%5Cright%5D_6%5Ex%24)
![$=\frac{1}{450}\left[ \left( \frac{x^3}{3} - \frac{x^2}{2}\left) - \left( \frac{6^3}{3} - \frac{6^2}{2} \right) \right] $](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B450%7D%5Cleft%5B%20%5Cleft%28%20%5Cfrac%7Bx%5E3%7D%7B3%7D%20-%20%5Cfrac%7Bx%5E2%7D%7B2%7D%5Cleft%29%20-%20%5Cleft%28%20%5Cfrac%7B6%5E3%7D%7B3%7D%20-%20%5Cfrac%7B6%5E2%7D%7B2%7D%20%5Cright%29%20%5Cright%5D%20%20%24)
![$=\frac{1}{450}\left[\frac{x^3}{3} - \frac{x^2}{2} - 54 \right]$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B450%7D%5Cleft%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%20-%20%5Cfrac%7Bx%5E2%7D%7B2%7D%20-%2054%20%5Cright%5D%24)
2. Mean 


![$=\frac{1}{450} \left[\frac{x^4}{4} - \frac{x^3}{3} \right]_6^{12} \ dx$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B450%7D%20%5Cleft%5B%5Cfrac%7Bx%5E4%7D%7B4%7D%20-%20%5Cfrac%7Bx%5E3%7D%7B3%7D%20%5Cright%5D_6%5E%7B12%7D%20%5C%20dx%24)

![$=\frac{1}{450} [4608 - 252]$](https://tex.z-dn.net/?f=%24%3D%5Cfrac%7B1%7D%7B450%7D%20%5B4608%20-%20252%5D%24)
= 17.2857