Answer:
957
The answer is this because the next 3 digit multiple of 33 would be 990.
This is always ''interesting'' If you see an absolute value, you always need to deal with when it is zero:
(x-4)=0 ===> x=4,
so that now you have to plot 2 functions!
For x<= 4: what's inside the absolute value (x-4) is negative, right?, then let's make it +, by multiplying by -1:
|x-4| = -(x-4)=4-x
Then:
for x<=4, y = -x+4-7 = -x-3
for x=>4, (x-4) is positive, so no changes:
y= x-4-7 = x-11,
Now plot both lines. Pick up some x that are 4 or less, for y = -x-3, and some points that are 4 or greater, for y=x-11
In fact, only two points are necessary to draw a line, right? So if you want to go full speed, choose:
x=4 and x= 3 for y=-x-3
And just x=5 for y=x-11
The reason is that the absolute value is continuous, so x=4 works for both:
x=4===> y=-4-3 = -7
x==4 ====> y = 4-11=-7!
abs() usually have a cusp int he point where it is =0
Hope it helps, despite being this long!
12 rows of 2 also model a product of 24; 2 × 12 = 24; 12 × 2 = 24. Use<span> Two-Color Counters to build each model. </span>Write number sentences<span> that show the </span>Commutative Property of Multiplication<span>. </span>Using<span> Two-Color Counters, model the </span>Commutative Property of Multiplication<span> for each pair of factors.</span>