Answer:
In the beginning, there is 60 L of water in the bathtub. The water drains out from the bathtub at 2.5 L per minute. How many minutes does it take until all of the water is drained out?
Zero of the function: (24, 0)
The value 24 min represents the number of minutes it takes for the water to completely drain out from the bathtub.
Step-by-step explanation:
Zero of the function is when y=0
0 = 60 -2.5 x
x = 24
Answer:
1) ∠A=84°
2) ∠C=20°
Step-by-step explanation:
1)
First, find ∠C:
<em>(I'm assuming the exterior angle of 126° makes a straight line with ∠C)</em>
The angles on a straight line always add up to 180. Therefore:
∠C+126=180
∠C=180-126
∠C=54
Then find ∠B:
We also know that all the angles in a triangle add up to 180. Therefore:
∠A+∠B+∠C=180
∠A+∠B+54=180
∠A+∠B=126
<em>(we know ∠A=2(∠B))</em>
2(∠B)+∠B=126
3(∠B)=126
∠B=42
Now, find ∠A:
∠A=2(∠B)
∠A=2(42)
∠A=84°
2)
First, find ∠B:
<em>(Again, I'm assuming the exterior angle of 100° makes a straight line with ∠B)</em>
The angles on a straight line always add up to 180. Therefore:
∠B+100=180
∠B=180-100
∠B=80
Then find ∠A:
We also know that all the angles in a triangle add up to 180. Therefore:
∠A+∠B+∠C=180
∠A+80+∠C=180
∠A+∠C=100
<em>(we know ∠A=4(∠C))</em>
4(∠C)+∠C=100
5(∠C)=100
∠C=20°
Answer:
ima say 10 hours since its 9.45 hours she works.
Answer:
Yes, the relationship can be described by a constant rate of $18.75 per dog
Step-by-step explanation:
see the attached figure to better understand the problem
Let
x ----> the number of dogs
y ---> the amount of money earned
we have the points

step 1
Find the slope with the first and second point


step 2
Find the slope with the first and third point


Compare the slopes
The slopes are the same
That means, that the three points lies on the same line
therefore
Yes, the relationship can be described by a constant rate of $18.75 per dog
Answer:
Step-by-step explanation:

A.B = A × B

Dimension of the resultant matrix is (3 × 3)