So, 4/3 - 2i
4/3 - 2i = 12/13 + i8/13
multiply by the conjugate:
3 + 2i/3 + 2i
= 4(3 + 2i)/(3 - 2i) (3 + 2i)
(3 - 2i) (3 + 2i) = 13
(3 - 2i) (3 + 2i)
apply complex arithmetic rule: (a + bi) (a - bi) = a^2 + b^2
a = 3, b = - 2
= 3^2 + (- 2)^2
refine: = 13
= 4(3 + 2i)/13
distribute parentheses:
a(b + c) = ab + ac
a = 4, b = 3, c = 2i
= 4(3) + 4(2i)
Simplify:
4(3) + 4(2i)
12 + 8i
4(3) + 4(2i)
Multiply the numbers: 4(3) = 12
= 12 + 2(4i)
Multiply the numbers: 4(2) = 8
= 12 + 8i
12 + 8i
= 12 + 8i/13
Group the real par, and the imaginary part of the complex numbers:
Your answer is: 12/13 + 8i/13
Hope that helps!!!
Answer:
8sin(x)cos³(x)
Step-by-step explanation:
sin(4x) +2 sin(2x) = 2sin(2x)*cos(2x) + 2sin(2x) = 2sin(2x)(cos2x + 1)=
= 2sin(2x)(cos²x - sin²x + cos²x + sin²x)=²2sin(2x)*(2cos²x)=
= 4*2sin(x)*cos(x)*cos²(x)= 8sin(x)cos³(x)
Lol do your own work. Pay attention in class, it'll pay off ;)
Answer:
The inverse of the function h(x) is
.
Step-by-step explanation:
The given function is

Replace h(x) by y.

Interchange x and y.

Subtract 4 from both sides to isolate variable y,

Multiply both sides by 2.

Divide both sides by 5.

Replace y by h⁻¹(x).

Therefore the inverse of the function h(x) is
.