Hello,
Intersection of a parabola and a line has atmost 2 points
Answer A (can not be realized)
Answer:
A is the answer
Step-by-step explanation:
Answer:
UW = 5
Step-by-step explanation:
use the altitude rule and set up a proportion:
4/UW = UW/6.25
cross-multiply:
UW² = 25
UW = 
UW = 5
Eliminate <em>x</em> by taking two equations at a time and combining them in the the right parts.
For example, taking the first two equations, we can eliminate <em>x</em> by subtracting 2 times the second equation away from the first:
(2<em>x</em> - 5<em>y</em> + 7<em>z</em>) - 2 (<em>x</em> - 3<em>y</em> + 4<em>z</em>) = 6 - 2×3
(2<em>x</em> - 2<em>x</em>) + (-5<em>y</em> + 6<em>y</em>) + (7<em>z</em> - 8<em>z</em>) = 6 - 6
<em>y</em> - <em>z</em> = 0
Similarly, take 3 times the second equation from the third:
(3<em>x</em> - 8<em>y</em> + 11<em>z</em>) - 3 (<em>x</em> - 3<em>y</em> + 4<em>z</em>) = 11 - 3×3
(3<em>x</em> - 3<em>x</em>) + (-8<em>y</em> + 9<em>y</em>) + (11<em>z</em> - 12<em>z</em>) = 11 - 33
<em>y</em> - <em>z</em> = -22
But these two new equations say 0 = -22, which is not true. So there is no solution to this system.
Answer:
Hi there!
The zeros of a quadratic equation are the points where the graph of the quadratic equation crosses the x-axis.